Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel, Switzerland). 2019. https://doi.org/10.3390/ma12040568.
Article PubMed PubMed Central Google Scholar
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16–33. https://doi.org/10.1016/j.actbio.2018.11.039.
Article CAS PubMed Google Scholar
Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 2019;90:37–48. https://doi.org/10.1016/j.actbio.2019.03.041.
Article CAS PubMed PubMed Central Google Scholar
Hann SY, Cui H, Esworthy T, Zhou X, Lee SJ, Plesniak MW, et al. Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater. 2021;123:263–74. https://doi.org/10.1016/j.actbio.2021.01.012.
Article CAS PubMed Google Scholar
Teixeira BN, Aprile P, Mendonça RH, Kelly DJ, Thiré RMdSM. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater. 2019;107:37–49. https://doi.org/10.1002/jbm.b.34093.
Article CAS PubMed Google Scholar
Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76. https://doi.org/10.1016/j.addr.2016.04.015.
Article CAS PubMed PubMed Central Google Scholar
Alam F, Shukla VR, Varadarajan KM, Kumar S. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J Mech Behav Biomed Mater. 2020;103: 103576. https://doi.org/10.1016/j.jmbbm.2019.103576.
Article CAS PubMed Google Scholar
Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114:5057–115. https://doi.org/10.1021/cr400407a.
Article CAS PubMed Google Scholar
Yang Y, Qi P, Wen F, Li X, Xia Q, Maitz MF, et al. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: hemocompatibility, growth behaviors of vascular cells, and tissue response. ACS Appl Mater Interfaces. 2014;6:14608–20. https://doi.org/10.1021/am503925r.
Article CAS PubMed Google Scholar
Kao CT, Lin C-C, Chen Y-W, Yeh CH, Fang H-Y, Shie M-Y. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015;56:165–73. https://doi.org/10.1016/j.msec.2015.06.028.
Article CAS PubMed Google Scholar
Gao X, Song J, Ji P, Zhang X, Li X, Xu X, et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interface. 2016;8:3499–515. https://doi.org/10.1021/acsami.5b12413.
Niaza KV, Senatov FS, Kaloshkin SD, Maksimkin AV, Chukov DI. 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction. J Phys Conf Ser. 2016;741: 012068. https://doi.org/10.1088/1742-6596/741/1/012068.
Mondal S, Nguyen TP, Pham VH, Hoang G, Manivasagan P, Kim MH, et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020;46:3443–55. https://doi.org/10.1016/j.ceramint.2019.10.057.
Xu Z, Wang N, Liu P, Sun Y, Wang Y, Fei F, et al. Poly(Dopamine) coating on 3D-printed poly-lactic-co-glycolic acid/β-Tricalcium phosphate scaffolds for bone tissue engineering. Molecules (Basel, Switzerland). 2019. https://doi.org/10.3390/molecules24234397.
Article PubMed PubMed Central Google Scholar
Petrie A, Sabin CA. Medical statistics at a glance workbook. Hoboken: John Wiley & Sons; 2013.
Sun Y, Deng Y, Ye Z, Liang S, Tang Z, Wei S. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating. Colloids Surf B Biointerfaces. 2013;111:107–16. https://doi.org/10.1016/j.colsurfb.2013.05.037.
Article CAS PubMed Google Scholar
Arastouei M, Khodaei M, Atyabi SM, Jafari NM. Poly lactic acid-akermanite composite scaffolds prepared by fused filament fabrication for bone tissue engineering. J Mater Res Technol. 2020;9:14540–8. https://doi.org/10.1016/j.jmrt.2020.10.036.
El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EA, Eltaher HM. 3D printed bioinspired scaffolds integrating doxycycline nanoparticles: customizable implants for in vivo osteoregeneration. Int J Pharm. 2021;607: 121002. https://doi.org/10.1016/j.ijpharm.2021.121002.
Article CAS PubMed Google Scholar
Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;104: 109960. https://doi.org/10.1016/j.msec.2019.109960.
Article CAS PubMed Google Scholar
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15. https://doi.org/10.1016/j.biomaterials.2006.01.017.
Article CAS PubMed Google Scholar
Maia-Pinto MOC, Brochado ACB, Teixeira BN, Sartoretto SC, Uzeda MJ, Alves A, et al. Biomimetic mineralization on 3d printed pla scaffolds: on the response of human primary osteoblasts spheroids and in vivo implantation. Polymers (Basel). 2020. https://doi.org/10.3390/polym13010074.
Abolgheit S, Abdelkader S, Aboushelib M, Omar E, Mehanna R. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl. 2021;36:128–39. https://doi.org/10.1177/0885328220963920.
Article CAS PubMed Google Scholar
Abdelrasoul M, El-Fattah AA, Kotry G, Ramadan O, Essawy M, Kamaldin J, et al. Regeneration of critical-sized grade II furcation using a novel injectable melatonin-loaded scaffold. Oral Dis. 2022. https://doi.org/10.1111/odi.14314.
Essawy MM, Rafik ST, Awaad AK, Mourad GM, El Achy SN. Photo-excitable zinc sulfide nanoparticles: a theranostic nanotool for cancer management. Oral Dis. 2022. https://doi.org/10.1111/odi.14324.
Yao Q, Cosme JG, Xu T, Miszuk JM, Picciani PH, Fong H, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–27. https://doi.org/10.1016/j.biomaterials.2016.11.018.
Article CAS PubMed Google Scholar
Mohsenimehr S, Khani MR, Fani N, Baghaban Eslaminejad MR, Shokri B, Ghassami A. Surface modification of PLA scaffold using radio frequency (RF) nitrogen plasma in tissue engineering application. Surf Topogr. 2020;8: 015012. https://doi.org/10.1088/2051-672X/ab7c30.
Chen W, Nichols L, Brinkley F, Bohna K, Tian W, Priddy MW, et al. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds. Mater Sci Eng C Mater Biol Appl. 2021;120: 111686. https://doi.org/10.1016/j.msec.2020.111686.
Article CAS PubMed Google Scholar
Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos Part A Appl Sci Manuf. 2017;103:96–105. https://doi.org/10.1016/j.compositesa.2017.09.013.
Jaidev LR, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Des. 2019;161:44–54. https://doi.org/10.1016/j.matdes.2018.11.018.
Comments (0)