Adiga D, Bhat S, Chakrabarty S, Kabekkodu SP (2022) DOC2B is a negative regulator of Wnt/β-catenin signaling pathway in cervical cancer. Pharmacol Res 180:106239. https://doi.org/10.1016/j.phrs.2022.106239
Article CAS PubMed Google Scholar
Caunt CJ, Sale MJ, Smith PD, Cook SJ (2015) MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 15:577–592. https://doi.org/10.1038/nrc4000
Article CAS PubMed Google Scholar
Chi C, Hou W, Zhang Y, Chen J, Shen Z, Chen Y, Li M (2023) PDHB-AS suppresses cervical cancer progression and cisplatin resistance via inhibition on Wnt/β-catenin pathway. Cell Death Dis 14:90. https://doi.org/10.1038/s41419-022-05547-5
Article CAS PubMed PubMed Central Google Scholar
Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC (2013) Human papillomavirus and cervical cancer. Lancet 382:889–899. https://doi.org/10.1016/S0140-6736(13)60022-7
Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A (2016) Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 15:69. https://doi.org/10.1186/s12943-016-0555-x
Article CAS PubMed PubMed Central Google Scholar
Domoto T, Uehara M, Bolidong D, Minamoto T (2020) Glycogen synthase kinase 3β in Cancer Biology and Treatment. Cells 9:1388. https://doi.org/10.3390/cells9061388
Article CAS PubMed PubMed Central Google Scholar
Erdem A, Marin S, Pereira-Martins DA, Cortés R, Cunningham A, Pruis MG, de Boer B, van den Heuvel F, Geugien M, Wierenga A et al (2022) The glycolytic gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nat Commun 13:1105. https://doi.org/10.1038/s41467-022-28737-3
Article CAS PubMed PubMed Central Google Scholar
Eser S, Reiff N, Messer M, Seidler B, Gottschalk K, Dobler M, Hieber M, Arbeiter A, Klein S, Kong B et al (2013) Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23:406–420. https://doi.org/10.1016/j.ccr.2013.01.023
Article CAS PubMed Google Scholar
Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ, Spits H, Cantrell DA (2009) Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J Exp Med 206:2441–2454. https://doi.org/10.1084/jem.20090219
Article CAS PubMed PubMed Central Google Scholar
Gagliardi PA, di Blasio L, Orso F, Seano G, Sessa R, Taverna D, Bussolino F, Primo L (2012) 3-phosphoinositide-dependent kinase 1 controls breast tumor growth in a kinase-dependent but akt-independent manner. Neoplasia 14:719–731. https://doi.org/10.1593/neo.12856
Article CAS PubMed PubMed Central Google Scholar
Gagliardi PA, Puliafito A, Primo L (2018) PDK1: at the crossroad of cancer signaling pathways. Semin Cancer Biol 48:27–35. https://doi.org/10.1016/j.semcancer.2017.04.014
Article CAS PubMed Google Scholar
Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004. https://doi.org/10.1038/nrd1902
Article CAS PubMed Google Scholar
Holderfield M, Deuker MM, McCormick F, McMahon M (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14:455–467. https://doi.org/10.1038/nrc3760
Article CAS PubMed PubMed Central Google Scholar
Hsieh YS, Chu SC, Huang SC, Kao SH, Lin MS, Chen PN (2021) Gossypol reduces metastasis and epithelial-mesenchymal transition by targeting protease in human cervical Cancer. Am J Chin Med 49:181–198. https://doi.org/10.1142/S0192415X21500105
Article CAS PubMed Google Scholar
Hu T, Zhang Q, Gao L (2020) LncRNA CAR10 Upregulates PDPK1 to promote cervical Cancer Development by sponging miR-125b-5p. Biomed Res Int 2020(4351671). https://doi.org/10.1155/2020/4351671
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. https://doi.org/10.3322/caac.20107
Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21:299–310. https://doi.org/10.2165/00063030-200721050-00002
Article CAS PubMed Google Scholar
Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405. https://doi.org/10.1016/j.cell.2017.04.001
Article CAS PubMed PubMed Central Google Scholar
McMellen A, Woodruff ER, Corr BR, Bitler BG, Moroney MR (2020) Wnt signaling in gynecologic malignancies. Int J Mol Sci 21. https://doi.org/10.3390/ijms21124272
Miaomiao Z, Songpo W, Qi L, Qing J, Piaoting G, Xiaowei L (2018) MALAT1: a long noncoding RNA highly associated with human cancers (review). Oncol Lett 16. https://doi.org/10.3892/ol.2018.8613
Mora A, Komander D, van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15:161–170. https://doi.org/10.1016/j.semcdb.2003.12.022
Article CAS PubMed Google Scholar
Ni D, Liu D, Zhang J, Lu S (2018) Computational insights into the interactions between Calmodulin and the c/nSH2 domains of p85α Regulatory Subunit of PI3Kα: implication for PI3Kα activation by Calmodulin. Int J Mol Sci 19. https://doi.org/10.3390/ijms19010151
Pai S, Yadav VK, Kuo KT, Pikatan NW, Lin CS, Chien MH, Lee WH, Hsiao M, Chiu SC, Yeh CT et al (2021) PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-Mediated Glycolysis Signaling Pathway. Int J Mol Sci 22. https://doi.org/10.3390/ijms222111492
Paldino E, Tesori V, Casalbore P, Gasbarrini A, Puglisi MA (2014) Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells. Biomed Res Int 2014:859871. https://doi.org/10.1155/2014/859871
Article CAS PubMed PubMed Central Google Scholar
Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, Cui B, Wang HF, Zhao Y, An F et al (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37:1062–1074. https://doi.org/10.1038/onc.2017.368
Article CAS PubMed Google Scholar
Qureshi R, Arora H, Rizvi MA (2015) EMT in cervical cancer: its role in tumour progression and response to therapy. Cancer Lett 356:321–331. https://doi.org/10.1016/j.canlet.2014.09.021
Article CAS PubMed Google Scholar
Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403. https://doi.org/10.1016/j.semcancer.2012.04.001
Article CAS PubMed PubMed Central Google Scholar
Schmitt DL, Sundaram A, Jeon M, Luu BT, An S (2018) Spatial alterations of De Novo purine biosynthetic enzymes by akt-independent PDK1 signaling pathways. PLoS ONE 13:e0195989. https://doi.org/10.1371/journal.pone.0195989
Article CAS PubMed PubMed Central Google Scholar
Scortegagna M, Lau E, Zhang T, Feng Y, Sereduk C, Yin H, De SK, Meeth K, Platt JT, Langdon CG et al (2015) PDK1 and SGK3 contribute to the growth of BRAF-Mutant melanomas and are potential therapeutic targets. Cancer Res 75:1399–1412. https://doi.org/10.1158/0008-5472.CAN-14-2785
Article CAS PubMed PubMed Central Google Scholar
Shackleford MT, Rao DM, Bordeaux EK, Hicks HM, Towers CG, Sottnik JL, Oesterreich S, Sikora MJ (2020) Estrogen regulation of mTOR Signaling and mitochondrial function in Invasive Lobular Carcinoma Cell Lines requires WNT4. Cancers (Basel) 12. https://doi.org/10.3390/cancers12102931
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X (2024) Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 17:46. https://doi.org/10.1186/s13045-024-01563-4
Comments (0)