MiRNAs and tempol therapeutic potential in prostate cancer: a preclinical approach

Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis 25(3):409– 16. https://doi.org/10.1007/s10555-006-9005-3. PMID: 16951987

Chen J, Zhang K, Xu Y, Gao Y, Li C, Wang R, Chen L (2016) The role of microRNA-26a in human cancer progression and clinical application. Tumour Biol 37(6):7095–7108. https://doi.org/10.1007/s13277-016-5017-y

Article  PubMed  CAS  Google Scholar 

Chen Y, Zhou X, Wu Y (2022) The miR-26a-5p/IL-6 axis alleviates sepsis-induced acute kidney injury by inhibiting renal inflammation. Ren Fail 44(1):551–561. https://doi.org/10.1080/0886022X.2022.2056486

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159. https://doi.org/10.1006/abio.1987.9999

Article  PubMed  CAS  Google Scholar 

Cochetti G, Poli G, Guelfi G, Boni A, Egidi MG, Mearini E (2016) Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: evaluation of potential diagnostic and prognostic role. Onco Targets Ther 13:9:7545–7553. https://doi.org/10.2147/OTT.S119027

Article  Google Scholar 

Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu SH, Ghoshal K, Villén J, Bartel DP (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell. 2;56(1):104– 15. https://doi.org/10.1016/j.molcel.2014.08.028

Geraldo MV, Yamashita AS, Kimura ET (2012) MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 12;31(15):1910-22. https://doi.org/10.1038/onc.2011.381

Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 11;92(8):3439-43. https://doi.org/10.1073/pnas.92.8.3439

Guo K, Zheng S, Xu Y, Xu A, Chen B, Wen Y (2016) Loss of miR-26a-5p promotes proliferation, migration, and invasion in prostate cancer through negatively regulating SERBP1. Tumour Biol 37(9):12843–12854 Epub 2016 Jul 23. PMID: 27449037

Article  PubMed  CAS  Google Scholar 

Hashemi GN, Najafi M, Salehi E, Farhood B, Mortezaee K (2019) Cyclooxygenase-2 in cancer: a review. J Cell Physiol 234(5):5683–5699. https://doi.org/10.1002/jcp.27411

Article  CAS  Google Scholar 

Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26(3):253–266. https://doi.org/10.1016/j.smim.2014.05.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu J, Huang S, Liu X, Zhang Y, Wei S, Hu X (2022) miR-155: an important role in inflammation response. J Immunol Res 6:2022–7437281. https://doi.org/10.1155/2022/7437281

Article  CAS  Google Scholar 

INCA (2023) In: < (ed) Câncer De Próstata. june, Acess, p 4. https://www.inca.gov.br/tipos-de-cancer/cancer-de-prostata>

Google Scholar 

Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1):49–62. https://doi.org/10.1038/nrrheum.2015.169

Article  PubMed  CAS  Google Scholar 

Khan S, Ayub H, Khan T, Wahid F (2019) MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 167:12–24. https://doi.org/10.1016/j.biochi.2019.09.001

Article  PubMed  CAS  Google Scholar 

Kido LA, de Almeida Lamas C, Maróstica MR Jr, Cagnon VHA (2019) Transgenic adenocarcinoma of the mouse prostate (TRAMP) model: a good alternative to study PCa progression and chemoprevention approaches. Life Sci 15:217:141–147. https://doi.org/10.1016/j.lfs.2018.12.002

Article  CAS  Google Scholar 

Kido LA, Rossetto IMU, Baseggio AM, Chiarotto GB, Alves LF, Santos FR, Lamas CA Jr, Cagnon MRM VHA (2022) Brazilian berry extract differentially induces inflammatory and Immune responses in androgen dependent and independent prostate Cancer cells. J Cancer Prev 30(3):182–191. https://doi.org/10.15430/JCP.2022.27.3.182

Article  Google Scholar 

Kurniawati I, Liu MC, Hsieh CL, Do AD, Sung SY (2022) Targeting Castration-Resistant Prostate Cancer Using Mesenchymal Stem Cell Exosomes for Therapeutic MicroRNA-let-7c Delivery. Front Biosci (Landmark Ed). 6;27(9):256. https://doi.org/10.31083/j.fbl2709256

Lejeune D, Hasanuzzaman M, Pitcock A, Francis J, Sehgal I (2006) The superoxide scavenger TEMPOL induces urokinase receptor (uPAR) expression in human prostate cancer cells. Mol Cancer 6:5:21. https://doi.org/10.1186/1476-4598-5-21

Article  CAS  Google Scholar 

Li Y, Wang P, Wu LL, Yan J, Pang XY, Liu SJ (2020) miR-26a-5p Ingastricastric Cancer Cell Proliferation and Invthroughhmediateddiated Wnt5a. Onco Targets Ther 27:13:2537–2550 PMID: 32273724; PMCID: PMC7108881

Article  Google Scholar 

Li T, Zhang T, Gao H, Wang H, Yan H, Wan Z, Liu R, Yin C (2023) Tempol modulates lncRNA-miRNA-mRNA ceRNA networks in ovaries of DHEA induced PCOS rats. J Steroid Biochem Mol Biol 226:106175. https://doi.org/10.1016/j.jsbmb.2022.106175

Article  PubMed  CAS  Google Scholar 

Liu ZQ, Feng J, Shi LL, Xu J, Zhang BJ, Chen L (2019) J. influences of miR-155/NF-κB signaling pathway on inflammatory factors in ARDS in neonatal pigs. Eur Rev Med Pharmacol Sci 23(16):7042–7048. https://doi.org/10.26355/eurrev_201908_18746

Article  PubMed  Google Scholar 

Lu Y, Liu M, Guo X, Wang P, Zeng F, Wang H, Tang J, Qin Z, Tao T (2023) miR-26a-5p alleviates CFA-nduced chronic inflammatory hyperalgesia through Wnt5a/CaMKII/NFAT signaling in mice. CNS Neurosci Ther 29(5):1254–1271. https://doi.org/10.1111/cns.14099

Article  PubMed  PubMed Central  CAS  Google Scholar 

Montico F, Lamas CA, Rossetto IMU, Baseggio AM, Cagnon VHA (2023) Lobe-specific responses of TRAMP mice dorsolateral prostate following celecoxib and nintedanib therapy. J Mol Histol. 2023. https://doi.org/10.1007/s10735-023-10130-z

Mulholland EJ, Green WP, Buckley NE, McCarthy HO (2019) Exploring the potential of MicroRNA Let-7c as a therapeutic for prostate Cancer. Mol Ther Nucleic Acids 6:18:927–937. https://doi.org/10.1016/j.omtn.2019.09.031

Article  CAS  Google Scholar 

Nadiminty N, Tummala R, Lou W, Zhu Y, Shi XB, Zou JX, Chen H, Zhang J, Chen X, Luo J, deVere White RW, Kung HJ, Evans CP, Gao AC (2012) MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS ONE 7(3):e32832. https://doi.org/10.1371/journal.pone.0032832

Article  PubMed  PubMed Central  CAS  Google Scholar 

Namekawa T, Ikeda K, Horie-Inoue K, Inoue S (2019) Application of prostate Cancer models for preclinical study: advantages and limitations of Cell lines, patient-derived xenografts, and three-Dimensional Culture of patient-derived cells. Cells 20(8):1–74. https://doi.org/10.3390/cells8010074

Article  CAS  Google Scholar 

Ouyang Y, Gao P, Zhu B, Chen X, Lin F, Wang X, Zhang H (2015) Downregulation of microRNA-429 inhibits cell proliferation by targeting p27Kip1 in human prostate cancer cells. Mol Med Rep 11:1435–1441. https://doi.org/10.3892/mmr.2014.2782

Article  PubMed  CAS  Google Scholar 

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 1;29(9):e45. https://doi.org/10.1093/nar/29.9.e45

Rajendiran S, Parwani AV, Hare RJ et al (2014) MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1.Mol. Cancer 19:13250. https://doi.org/10.1186/1476-4598-13-250

Article  CAS  Google Scholar 

Rizzo M, Berti G, Russo F, Fazio S, Evangelista M, D’Aurizio R, Pellegrini M, Rainaldi G (2017) Discovering the miR-26a-5p Targetome in Prostate Cancer Cells. J Cancer. 22;8(14):2729–2739. https://doi.org/10.7150/jca.18396

Rossetto I, Santos F, Kido L, Lamas C, Montico F, Cagnon V (2023) Tempol differential effect on prostate cancer inflammation: in vitro and in vivo evaluation. Prostate 83(5):403–415. https://doi.org/10.1002/pros.24473

Article  PubMed  CAS  Google Scholar 

Santo GD, Frasca M, Bertoli G, Castiglioni I, Cava C (2022) Identification of key miRNAs in prostate cancer progression based on miRNA-mRNA network construction. Comput Struct Biotechnol J 7:20:864–873. https://doi.org/10.1016/j.csbj.2022.02.002

Article  CAS  Google Scholar 

Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R (2020) TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine 135:155214. https://doi.org/10.1016/j.cyto.2020.155214

Article  PubMed  CAS  Google Scholar 

Shi Y, Liu Z, Lin Q, Luo Q, Cen Y, Li J, Fang X, Gong C (2021) MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel). 23;12(8):1289. https://doi.org/10.3390/genes12081289

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763

Article  PubMed  Google Scholar 

Staal J, Beyaert R (2018) Inflammation and NF-κB signaling in prostate Cancer: mechanisms and clinical implications. Cells 29(9):122. https://doi.org/10.3390/cells7090122

Article  CAS 

Comments (0)

No login
gif