Long COVID and pituitary dysfunctions: a bidirectional relationship?

COVID-19 cases | WHO COVID-19 dashboard Accessed: Jul. 09, 2024. [Online]. Available: https://data.who.int/dashboards/covid19/cases?n=c

Gupta A et al (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26(7):1017–1032. https://doi.org/10.1038/S41591-020-0968-3

Giustina A, Bilezikian JP (2022) Revisiting the endocrine and metabolic manifestations of COVID-19 two years into the pandemic. Rev Endocr Metab Disord 23(2):133–136. https://doi.org/10.1007/S11154-022-09716-X

Puig-Domingo M, Marazuela M, Yildiz BO, Giustina A (2021) COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine 72(2):301–316. https://doi.org/10.1007/S12020-021-02734-W

Marazuela M, Giustina A, Puig-Domingo M (2020) Endocrine and metabolic aspects of the COVID-19 pandemic. Rev Endocr Metab Disord 21(4):495–507. https://doi.org/10.1007/S11154-020-09569-2

Puig-Domingo M, Marazuela M, Giustina A (2020) COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine 68(1):2–5. https://doi.org/10.1007/S12020-020-02294-5

De Lorenzo R et al (2023) Longitudinal changes in physical function and their impact on Health outcomes in COVID-19 patients. Nutrients 15(20). https://doi.org/10.3390/NU15204474

di Filippo L, Frara S, Doga M, Giustina A (2022) The osteo-metabolic phenotype of COVID-19: an update. Endocrine 78(2):247–254. https://doi.org/10.1007/S12020-022-03135-3

di Filippo L et al (2022) Vertebral fractures at hospitalization predict impaired respiratory function during follow-up of COVID-19 survivors. Endocrine 77(2):392–400. https://doi.org/10.1007/S12020-022-03096-7

di Filippo L et al (2021) Hypocalcemia in COVID-19 is associated with low vitamin D levels and impaired compensatory PTH response. Endocrine 74(2):219–225. https://doi.org/10.1007/S12020-021-02882-Z

di Filippo L, Frara S, Giustina A (2021) The emerging osteo-metabolic phenotype of COVID-19: clinical and pathophysiological aspects. Nat Rev Endocrinol 17(8):445–446. https://doi.org/10.1038/S41574-021-00516-Y

di Filippo L, Doga M, Frara S, Giustina A (2022) Hypocalcemia in COVID-19: prevalence, clinical significance and therapeutic implications. Rev Endocr Metab Disord 23(2):299–308. https://doi.org/10.1007/S11154-021-09655-Z

di Filippo L et al (2021) Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine 71(1):9–13. https://doi.org/10.1007/S12020-020-02541-9

Di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A (2021) Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict Disease outcomes. J Clin Endocrinol Metab 106(2):E602–E614. https://doi.org/10.1210/CLINEM/DGAA738

di Filippo L, Formenti AM, Giustina A (2020) Hypocalcemia: the quest for the cause of a major biochemical feature of COVID-19. Endocrine 70(3):463–464. https://doi.org/10.1007/S12020-020-02525-9

Di Filippo L et al (2020) Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine 68(3):475–478. https://doi.org/10.1007/S12020-020-02383-5

Frara S, Allora A, Castellino L, di Filippo L, Loli P, Giustina A (2021) COVID-19 and the pituitary. Pituitary 24(3):465–481. https://doi.org/10.1007/S11102-021-01148-1

Frara S et al (2022) COVID-19 and hypopituitarism. Rev Endocr Metab Disord 23(2):215–231. https://doi.org/10.1007/S11154-021-09672-Y

Giustina A, Legg E, Cesana BM, Frara S, Mortini P, Fleseriu M (2021) Results from ACROCOVID: an international survey on the care of acromegaly during the COVID-19 era. Endocrine 71(2):273–280. https://doi.org/10.1007/S12020-020-02565-1

Capatina C, Poiana C, Fleseriu M (2023) Pituitary and SARS CoV-2: an unremitting conundrum. Best Pract Res Clin Endocrinol Metab 37(4). https://doi.org/10.1016/J.BEEM.2023.101752

Han T, Kang J, Li G, Ge J, Gu J (2020) Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study. Ann Transl Med 8(17):1077. https://doi.org/10.21037/ATM-20-4281

Ding Y et al (2004) Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203(2):622–630. https://doi.org/10.1002/PATH.1560

Khadke S et al (2020) Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents. Virol J 17(1). https://doi.org/10.1186/S12985-020-01415-W

Azkur AK et al (2020) Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75(7):1564–1581. https://doi.org/10.1111/ALL.14364

Troshina E, Melnichenko G, Senyushkina E, Mokrysheva N (2020) Adaptation of the hypothalamo-pituitary-thyroid and hypothalamo-pituitary-adrenal systems to a new infectious disease - COVID-19 in the development of COVID-19 pneumonia and/or cytokine storm. Clin Exp Thyroidol 16(1):21–27. https://doi.org/10.14341/KET12461

Bonetto V et al (2022) Markers of blood-brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front Immunol 13. https://doi.org/10.3389/FIMMU.2022.1070379

Fernández-De-las-peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Cuadrado ML, Florencio LL (2021) Defining post-COVID symptoms (post-, acute COVID, long COVID Persistent Post-COVID): an integrative classification. Int J Environ Res Public Health 18(5):1–9. https://doi.org/10.3390/IJERPH18052621

Sivan M, Taylor S (2020) NICE guideline on long covid. BMJ 371. https://doi.org/10.1136/BMJ.M4938

Overview | COVID-19 rapid guideline: managing the long-term effects of COVID-19 | Guidance | NICE [Online]. https://www.nice.org.uk/guidance/ng188. Accessed 09 Jul 2024

Notarte KI et al (2022) Age, sex and previous comorbidities as risk factors not Associated with SARS-CoV-2 infection for long COVID-19: a systematic review and Meta-analysis. J Clin Med 11(24). https://doi.org/10.3390/JCM11247314

Maglietta G et al (2022) Prognostic factors for Post-COVID-19 syndrome: a systematic review and Meta-analysis. J Clin Med 11(6). https://doi.org/10.3390/JCM11061541/S1

Pintos-Pascual I et al (2022) Is SARS-CoV-2 the only cause of long-COVID? AIDS Rev 24(4):183–196. https://doi.org/10.24875/AIDSREV.22000025

Article  PubMed  Google Scholar 

Boaventura P, Macedo S, Ribeiro F, Jaconiano S, Soares P (2022) Post-COVID-19 condition: where are we now? Life (Basel) 12(4). https://doi.org/10.3390/LIFE12040517

Giustina A (2021) Hypovitaminosis D and the endocrine phenotype of COVID-19. Endocrine 72(1). https://doi.org/10.1007/S12020-021-02671-8

Bilezikian JP et al (2020) Mechanisms in endocrinology: vitamin D and COVID-19. Eur J Endocrinol 183(5):R133–R147. https://doi.org/10.1530/EJE-20-0665

Giustina A et al (2024) Consensus statement on vitamin D status assessment and supplementation: whys, whens, and hows. Endocr Rev. https://doi.org/10.1210/ENDREV/BNAE009

Article  Google Scholar 

Di Filippo L et al (2022) Vitamin D levels are associated with blood glucose and BMI in COVID-19 patients, predicting disease severity. J Clin Endocrinol Metab 107(1):E348–E360. https://doi.org/10.1210/CLINEM/DGAB599

di Filippo L, Uygur M, Locatelli M, Nannipieri F, Frara S, Giustina A (2023) Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 80(3):669–683. https://doi.org/10.1007/S12020-023-03331-9

Bilezikian JP et al (2023) Consensus and controversial aspects of vitamin D and COVID-19. J Clin Endocrinol Metab 108(5):1034–1042. https://doi.org/10.1210/CLINEM/DGAC719

di Filippo L (2023) Lack of vitamin D predicts impaired long-term immune response to COVID-19 vaccination. Endocrine 82(3):536–541. https://doi.org/10.1007/S12020-023-03481-W

di Filippo L et al (2023) Low vitamin D levels are associated with long COVID syndrome in COVID-19 survivors. J Clin Endocrinol Metab 108(10):e1106–e1116. https://doi.org/10.1210/CLINEM/DGAD207

di Filippo L, Frara S, Giustina A (2023) Response to the letter to the editor from Min et al: low vitamin D levels are associated with long COVID syndrome in COVID-19 survivors. J Clin Endocrinol Metab 109(1):E438–E439. https://doi.org/10.1210/CLINEM/DGAD327

Townsend L et al (2020) Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 15(11). https://doi.org/10.1371/JOURNAL.PONE.0240784

Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB (2015) Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol 173(3):R101–R113. https://doi.org/10.1530/EJE-15-0308

Chiovato L, Magri F, Carlé A (2019) Hypothyroidism in context: where we’ve been and where we’re going. Adv Ther 36(Suppl 2):47–58. https://doi.org/10.1007/S12325-019-01080-8

Doga M, Bonadonna S, Gola M, Mazziotti G, Giustina A (2006) Growth hormone deficiency in the adult. Pituitary 9(4):305–311. https://doi.org/10.1007/S11102-006-0410-Y

Hampshire A et al (2021) Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine 39. https://doi.org/10.1016/J.ECLINM.2021.101044

Su Y et al (2022) Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185(5):881–895. https://doi.org/10.1016/J.CELL.2022.01.014

Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ (2021) 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8(5):416–427. https://doi.org/10.1016/S2215-0366(21)00084-5

Moreno-Perez O et al (2022) Male pituitary-gonadal axis dysfunction in post-acute COVID-19 syndrome-Prevalence and associated factors: a mediterranean case series. Clin Endocrinol (Oxf) 96(3):353–362. https://doi.org/10.1111/CEN.14537

Salonia A et al (2022) Testosterone in males with COVID-19: a 7-month cohort study. Andrology 10(1):34–41. https://doi.org/10.1111/ANDR.13097

Chiloiro S et al (2019) The changing clinical spectrum of Hypophysitis. Trends Endocrinol Metab 30(9):590–602. https://doi.org/10.1016/J.TEM.2019.06.004

Mazziotti G, et al (2017) Management of endocrine disease: risk of overtreatment in patients with adrenal insufficiency: current and emerging aspects. Eur J Endocrinol 177(5):R231–R248. https://doi.org/10.1530/EJE-17-0154

Leow MKS, Kwek DSK, Ng AWK, Ong KC, Kaw GJL, Lee LSU (2005) Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) 63(2):197–202. https://doi.org/10.1111/J.1365-2265.2005.02325.X

Wheatland R (2004) Molecular mimicry of ACTH in SARS - implications for corticosteroid treatment and prophylaxis. Med Hypotheses 63(5):855–862. https://doi.org/10.1016/j.mehy.2004.04.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei L et al (2010) Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol 88(4):723–730. https://doi.org/10.1139/O10-022

Article  CAS  PubMed  Google Scholar 

Pérez-Torres D, Díaz-Rodríguez C, Armentia-Medina A (2022) Anti-ACTH antibodies in critically ill Covid-19 patients: a potential immune evasion mechanism of SARS-CoV-2. Med Intensiva 46(8):472–474. https://doi.org/10.1016/J.MEDINE.2021.09.001

Gonen MS et al (2022) Assessment of neuroendocrine changes and hypothalamo-pituitary autoimmunity in patients with COVID-19. Horm Metab Res 54(3):153–161. https://doi.org/10.1055/A-1764-1260

Taieb A, Nassim BHS, Asma G, Jabeur M, Ghada S, Asma BA (2024) The Growing understanding of the pituitary implication in the pathogenesis of long COVID-19 syndrome: a narrative review. Adv Respir Med 92(1):96–109. https://doi.org/10.3390/ARM92010013

Clarke SA et al (2021) Normal adrenal and thyroid function in patients who survive COVID-19 infection. J Clin Endocrinol Metab 106(8):2208–2220. https://doi.org/10.1210/CLINEM/DGAB349

Urhan E, Karaca Z, Unuvar GK, Gundogan K, Unluhizarci K (2022) Investigation of pituitary functions after acute coronavirus disease 2019. Endocr J 69(6):649–658. https://doi.org/10.1507/ENDOCRJ.EJ21-0531

Article  CAS  PubMed  Google Scholar 

Ramesh J (2023) Evaluation of the hypothalamo-pituitary-adrenal axis during the post-COVID-19 period in patients treated with steroids during the illness. Arch Endocrinol Metab 68:e220207. https://doi.org/10.20945/2359-4292-2022-0207

Rashmi KG et al (2023) Hypothalamic-pituitary adrenal Axis Status 3 months after recovery from COVID-19 infection. Endocr Res 48(4):85–93. https://doi.org/10.1080/07435800.2023.2245907

Article  CAS  Google Scholar 

Klein J et al (2023) Distinguishing features of long COVID identified through immune profiling. Nature 623(7985):139–148. https://doi.org/10.1038/S41586-023-06651-Y

Ach T et al (2024) Explaining long COVID: a pioneer cross-sectional study supporting the endocrine hypothesis. J Endocr Soc 8(3). https://doi.org/10.1210/JENDSO/BVAE003

Keller-Wood ME, Dallman MF (1984) Corticosteroid inhibition of ACTH secretion. Endocr Rev 5(1):1–24. https://doi.org/10.1210/EDRV-5-1-1

Article  CAS  PubMed  Google Scholar 

Shipston MJ (2022) Glucocorticoid action in the anterior pituitary gland: insights from corticotroph physiology. Curr Opin Endocr Metab Res 25. https://doi.org/10.1016/J.COEMR.2022.100358

Quaranta VN et al (2023) The predictors of long COVID in Southeastern Italy. J Clin Med 12(19). https://doi.org/10.3390/JCM12196303

Davelaar J, Jessurun N, Schaap G, Bode C, Vonkeman H (2023) The effect of corticosteroids, antibiotics, and anticoagulants on the development of post-COVID-19 syndrome in COVID-19 hospitalized patients 6 months after discharge: a retrospective follow up study, Clin Exp Med 23(8):4881–4888. https://doi.org/10.1007/S10238-023-01153-7

Beuschlein F (2024) European Society of Endocrinology and Endocrine Society Joint Clinical guideline: diagnosis and therapy of glucocorticoid-induced adrenal insufficiency. J Clin Endocrinol Metab 109(7):1657–1683. https://doi.org/10.1210/CLINEM/DGAE250

Zou R et al (2020) Euthyroid sick syndrome in patients with COVID-19. Front Endocrinol (Lausanne) 11. https://doi.org/10.3389/FENDO.2020.566439

Brancatella A, Viola N, Santini F, Latrofa F (2023) COVID-induced thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab 37(2). https://doi.org/10.1016/J.BEEM.2023.101742

Meftah E et al (2023) Subacute thyroiditis following COVID-19: a systematic review. Front Endocrinol (Lausanne) 14. https://doi.org/10.3389/FENDO.2023.1126637

Baldelli R et al (2021) Thyroid dysfunction in COVID-19 patients. J Endocrinol Invest 44(12):2735–2739. https://doi.org/10.1007/S40618-021-01599-0

Khoo B, et al (2021) Thyroid function before, during, and, after COVID-19. J Clin Endocrinol Metab 106(2):E803–E811. https://doi.org/10.1210/CLINEM/DGAA830

Lui DTW et al (2021) Long COVID in patients with mild to moderate disease: do thyroid function and autoimmunity play a role? Endocr Pract 27(9):894–902. https://doi.org/10.1016/J.EPRAC.2021.06.016

Lui DTW et al (2023) A prospective follow-up on thyroid function, thyroid autoimmunity and long COVID among 250 COVID-19 survivors. Endocrine 80(2):380–391. https://doi.org/10.1007/S12020-022-03281-8

Facondo P et al (2022) Case report: hypothalamic amenorrhea following COVID-19 infection and review of literatures. Front Endocrinol (Lausanne) 13. https://doi.org/10.3389/FENDO.2022.840749

Brabant G, Ocran K, Ranft U, Von Zur A, Mühlen, Hesch RD (1989) Physiological regulation of thyrotropin. Biochimie 71(2):293–301. https://doi.org/10.1016/0300-9084(89)90066-7

Article  CAS  PubMed  Google Scholar 

Yu P, Yuan H, Chen H, Li X (2024) Thyroid function spectrum in Cushing’s syndrome. BMC Endocr Disord 24(1). https://doi.org/10.1186/S12902-024-01614-4

Brandi ML, Giustina A (2020) Sexual dimorphism of coronavirus 19 morbidity and lethality. Trends Endocrinol Metab 31(12):918–927. https://doi.org/10.1016/J.TEM.2020.09.003

Groti Antonic K, Antonic B, Caliber M, Dhindsa S (2024) Men, testosterone and Covid-19. Clin Endocrinol (Oxf) 100(1):56–65. https://doi.org/10.1111/CEN.14952

Al-kuraishy HM et al (2023) Long COVID and risk of erectile dysfunction in recovered patients from mild to moderate COVID-19. Sci Rep 13(1):1. https://doi.org/10.1038/s41598-023-32211-5

Salonia A et al (2023) Testosterone in males with COVID-19: a 12-month cohort study. Andrology 11(1):17–23. https://doi.org/10.1111/ANDR.13322

Bhasin S et al (2018) Testosterone therapy in men with hypogonadism: an endocrine Society Clinical Practice guideline. J Clin Endocrinol Metab 103(5):1715–1744. https://doi.org/10.1210/JC.2018-00229

Giustina A et al (2008) Guidelines for the treatment of growth hormone excess and growth hormone deficiency in adults. J Endocrinol Invest 31(9):820–838. https://doi.org/10.1007/BF03349263

Article  CAS  PubMed  Google Scholar 

Gazzaruso C, Gola M, Karamouzis I, Giubbini R, Giustina A (2014) Cardiovascular risk in adult patients with growth hormone (GH) deficiency and following substitution with GH–an update. J Clin Endocrinol Metab 99(1):18–29. https://doi.org/10.1210/JC.2013-2394

Gola M, Bonadonna S, Doga M, Giustina A (2005) Clinical review: growth hormone and cardiovascular risk factor

Comments (0)

No login
gif