Upregulation of OGT-mediated EZH2 O-GlcNAcylation Promotes Human Umbilical Vein Endothelial Cell Proliferation, Invasion, Migration, and Tube Formation in Gestational Diabetes Mellitus

Lowe, Jr, W. L., et al. (2019). Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): maternal gestational diabetes mellitus and childhood glucose metabolism. Diabetes Care, 42(3), 372–380.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sweeting, A., et al. (2022). A clinical update on gestational diabetes mellitus. Endocrine Reviews, 43(5), 763–793.

Article  PubMed  PubMed Central  Google Scholar 

Ye, W., et al. (2022). Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ, 377, e067946.

Article  PubMed  PubMed Central  Google Scholar 

Cvitic, S., et al. (2018). Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes. Diabetologia, 61(11), 2398–2411.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dela Justina, V., et al. (2018). O-linked N-acetyl-glucosamine deposition in placental proteins varies according to maternal glycemic levels. Life Sciences, 205, 18–25.

Article  Google Scholar 

Diniz, M. S. et al. (1869). Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 8, 166834

Google Scholar 

Sultan, S. A., et al. (2015). The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. Journal of Cellular Physiology, 230(11), 2695–2705.

Article  CAS  PubMed  Google Scholar 

Ye, H. H., Yang, S. H., & Zhang, Y. (2018). MEG3 damages fetal endothelial function induced by gestational diabetes mellitus via AKT pathway. European Review for Medical and Pharmacological Sciences, 22(24), 8553–8560.

PubMed  Google Scholar 

Aquino-Gil, M., et al. (2017). OGT: a short overview of an enzyme standing out from usual glycosyltransferases. Biochemical Society Transactions, 45(2), 365–370.

Article  CAS  PubMed  Google Scholar 

Erickson, J. R., et al. (2013). Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature, 502(7471), 372–376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang, N., & Li, P. (2021). O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis. Life Sciences, 274, 119226.

Article  CAS  PubMed  Google Scholar 

Goldberg, H., Whiteside, C., & Fantus, I. G. (2011). O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. American Journal of Physiology-Endocrinology and Metabolism, 301(4), E713–E726.

Article  CAS  PubMed  Google Scholar 

Cui, Y., et al. (2023). O-GlcNAc transferase contributes to sex-specific placental deregulation in gestational diabetes. Placenta, 131, 1–12.

Article  CAS  PubMed  Google Scholar 

Shi, H., et al. (2018). Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Molecular Metabolism, 11, 160–177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, M., et al. (2019). O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene, 38(3), 301–316.

Article  CAS  PubMed  Google Scholar 

Forma, E., et al. (2018). Impact of OGT deregulation on EZH2 target genes FOXA1 and FOXC1 expression in breast cancer cells. PLoS ONE, 13(6), e0198351.

Article  PubMed  PubMed Central  Google Scholar 

Jin, L., et al. (2018). Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell Death & Disease, 9(10), 1017.

Article  Google Scholar 

Chu, C. S., et al. (2014). O-GlcNAcylation regulates EZH2 protein stability and function. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1355–1360.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Floris, I., et al. (2015). Gestational diabetes mellitus impairs fetal endothelial cell functions through a mechanism involving microRNA-101 and histone methyltransferase enhancer of zester homolog-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(3), 664–674.

Article  CAS  PubMed  Google Scholar 

Chandel, S., et al. (2024). Isolation and Culture of Human Umbilical Vein Endothelial Cells (HUVECs). Methods in Molecular Biology, 2711, 147–162.

Article  PubMed  Google Scholar 

Vasile, F. C., et al. (2021). An update of medical nutrition therapy in gestational diabetes mellitus. Journal of Diabetes Research, 2021, 5266919.

Article  PubMed  PubMed Central  Google Scholar 

Ning, J., & Yang, H. (2021). O-GlcNAcylation in hyperglycemic pregnancies: impact on placental function. Frontiers in Endocrinology, 12, 659733.

Article  PubMed  PubMed Central  Google Scholar 

Valero, P., et al. (2023). Platelets and endothelial dysfunction in gestational diabetes mellitus. Acta Physiologica, 237(4), e13940.

Article  CAS  PubMed  Google Scholar 

Lee, H. W., et al. (2021). Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation, 144(16), 1308–1322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X., & Qian, K. (2017). Protein O-GlcNAcylation: emerging mechanisms and functions. Nature Reviews Molecular Cell Biology, 18(7), 452–465.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Issad, T., Masson, E., & Pagesy, P. (2010). O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes & Metabolism, 36(6 Pt 1), 423–435.

Article  CAS  Google Scholar 

Dela Justina, V., et al. (2020). O-GlcNAc impairs endothelial function in uterine arteries from virgin but not pregnant rats: The role of GSK3β. European Journal of Pharmacology, 880, 173133.

Article  PubMed Central  Google Scholar 

Barnes, J. W., et al. (2019). O-GlcNAc Transferase Regulates Angiogenesis in Idiopathic Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 20(24), 6299.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, B., Soesanto, Y., & McClain, D. A. (2008). Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 651–657.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pantaleon, M., et al. (2010). Toxic effects of hyperglycemia are mediated by the hexosamine signaling pathway and o-linked glycosylation in early mouse embryos. Biology of Reproduction, 82(4), 751–758.

Article  CAS  PubMed  Google Scholar 

Chang, L., & Zhou, R. (2022). Histone methyltransferase EZH2 in proliferation, invasion, and migration of fibroblast-like synoviocytes in rheumatoid arthritis. Journal of Bone and Mineral Metabolism, 40(2), 262–274.

Article  CAS  PubMed  Google Scholar 

Del Moral-Morales, A., et al. (2022). EZH2 Mediates Proliferation, Migration, and Invasion Promoted by Estradiol in Human Glioblastoma Cells. Frontiers in Endocrinology, 13, 703733.

Article  PubMed 

Comments (0)

No login
gif