Lowe, Jr, W. L., et al. (2019). Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): maternal gestational diabetes mellitus and childhood glucose metabolism. Diabetes Care, 42(3), 372–380.
Article CAS PubMed PubMed Central Google Scholar
Sweeting, A., et al. (2022). A clinical update on gestational diabetes mellitus. Endocrine Reviews, 43(5), 763–793.
Article PubMed PubMed Central Google Scholar
Ye, W., et al. (2022). Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ, 377, e067946.
Article PubMed PubMed Central Google Scholar
Cvitic, S., et al. (2018). Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes. Diabetologia, 61(11), 2398–2411.
Article CAS PubMed PubMed Central Google Scholar
Dela Justina, V., et al. (2018). O-linked N-acetyl-glucosamine deposition in placental proteins varies according to maternal glycemic levels. Life Sciences, 205, 18–25.
Diniz, M. S. et al. (1869). Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 8, 166834
Sultan, S. A., et al. (2015). The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. Journal of Cellular Physiology, 230(11), 2695–2705.
Article CAS PubMed Google Scholar
Ye, H. H., Yang, S. H., & Zhang, Y. (2018). MEG3 damages fetal endothelial function induced by gestational diabetes mellitus via AKT pathway. European Review for Medical and Pharmacological Sciences, 22(24), 8553–8560.
Aquino-Gil, M., et al. (2017). OGT: a short overview of an enzyme standing out from usual glycosyltransferases. Biochemical Society Transactions, 45(2), 365–370.
Article CAS PubMed Google Scholar
Erickson, J. R., et al. (2013). Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature, 502(7471), 372–376.
Article CAS PubMed PubMed Central Google Scholar
Fang, N., & Li, P. (2021). O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis. Life Sciences, 274, 119226.
Article CAS PubMed Google Scholar
Goldberg, H., Whiteside, C., & Fantus, I. G. (2011). O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. American Journal of Physiology-Endocrinology and Metabolism, 301(4), E713–E726.
Article CAS PubMed Google Scholar
Cui, Y., et al. (2023). O-GlcNAc transferase contributes to sex-specific placental deregulation in gestational diabetes. Placenta, 131, 1–12.
Article CAS PubMed Google Scholar
Shi, H., et al. (2018). Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Molecular Metabolism, 11, 160–177.
Article CAS PubMed PubMed Central Google Scholar
Jiang, M., et al. (2019). O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene, 38(3), 301–316.
Article CAS PubMed Google Scholar
Forma, E., et al. (2018). Impact of OGT deregulation on EZH2 target genes FOXA1 and FOXC1 expression in breast cancer cells. PLoS ONE, 13(6), e0198351.
Article PubMed PubMed Central Google Scholar
Jin, L., et al. (2018). Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell Death & Disease, 9(10), 1017.
Chu, C. S., et al. (2014). O-GlcNAcylation regulates EZH2 protein stability and function. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1355–1360.
Article CAS PubMed PubMed Central Google Scholar
Floris, I., et al. (2015). Gestational diabetes mellitus impairs fetal endothelial cell functions through a mechanism involving microRNA-101 and histone methyltransferase enhancer of zester homolog-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(3), 664–674.
Article CAS PubMed Google Scholar
Chandel, S., et al. (2024). Isolation and Culture of Human Umbilical Vein Endothelial Cells (HUVECs). Methods in Molecular Biology, 2711, 147–162.
Vasile, F. C., et al. (2021). An update of medical nutrition therapy in gestational diabetes mellitus. Journal of Diabetes Research, 2021, 5266919.
Article PubMed PubMed Central Google Scholar
Ning, J., & Yang, H. (2021). O-GlcNAcylation in hyperglycemic pregnancies: impact on placental function. Frontiers in Endocrinology, 12, 659733.
Article PubMed PubMed Central Google Scholar
Valero, P., et al. (2023). Platelets and endothelial dysfunction in gestational diabetes mellitus. Acta Physiologica, 237(4), e13940.
Article CAS PubMed Google Scholar
Lee, H. W., et al. (2021). Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation, 144(16), 1308–1322.
Article CAS PubMed PubMed Central Google Scholar
Yang, X., & Qian, K. (2017). Protein O-GlcNAcylation: emerging mechanisms and functions. Nature Reviews Molecular Cell Biology, 18(7), 452–465.
Article CAS PubMed PubMed Central Google Scholar
Issad, T., Masson, E., & Pagesy, P. (2010). O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes & Metabolism, 36(6 Pt 1), 423–435.
Dela Justina, V., et al. (2020). O-GlcNAc impairs endothelial function in uterine arteries from virgin but not pregnant rats: The role of GSK3β. European Journal of Pharmacology, 880, 173133.
Article PubMed Central Google Scholar
Barnes, J. W., et al. (2019). O-GlcNAc Transferase Regulates Angiogenesis in Idiopathic Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 20(24), 6299.
Article CAS PubMed PubMed Central Google Scholar
Luo, B., Soesanto, Y., & McClain, D. A. (2008). Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 651–657.
Article CAS PubMed PubMed Central Google Scholar
Pantaleon, M., et al. (2010). Toxic effects of hyperglycemia are mediated by the hexosamine signaling pathway and o-linked glycosylation in early mouse embryos. Biology of Reproduction, 82(4), 751–758.
Article CAS PubMed Google Scholar
Chang, L., & Zhou, R. (2022). Histone methyltransferase EZH2 in proliferation, invasion, and migration of fibroblast-like synoviocytes in rheumatoid arthritis. Journal of Bone and Mineral Metabolism, 40(2), 262–274.
Article CAS PubMed Google Scholar
Del Moral-Morales, A., et al. (2022). EZH2 Mediates Proliferation, Migration, and Invasion Promoted by Estradiol in Human Glioblastoma Cells. Frontiers in Endocrinology, 13, 703733.
Comments (0)