Zhang, C. L., Huang, T., Wu, B. L., He, W. X., & Liu, D. (2017). Stem cells in cancer therapy: opportunities and challenges. Oncotarget, 8(43), 75756.
Article PubMed PubMed Central Google Scholar
Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25, 1–18.
Choudhuri, S., Chanderbhan, R., & Mattia, A. (2018). Carcinogenesis: mechanisms and models. In Veterinary Toxicology (pp. 339–354). Academic Press.
Mao, J. J., Pillai, G. G., Andrade, C. J., Ligibel, J. A., Basu, P., Cohen, L., Khan, I. A., Mustian, K. M., Puthiyedath, R., Dhiman, K. S., & Lao, L. (2022). Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA: A Cancer Journal for Clinicians, 72(2), 144–164.
Shi, A., Liu, L., Li, S., & Qi, B. (2024). Natural products targeting the MAPK-signaling pathway in cancer: overview. Journal of Cancer Research and Clinical Oncology, 150(1), 6.
Article PubMed PubMed Central Google Scholar
Park, H. B., & Baek, K. H. (2022). E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877(3), 188736.
Article CAS PubMed Google Scholar
He, Y., & Meng, X. (2020). MAPK signaling: emerging roles in lateral root formation. Trends in Plant Science, 25(2), 126–129.
Article CAS PubMed Google Scholar
Lee, S., Rauch, J., & Kolch, W. (2020). Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. International Journal of Molecular Sciences, 21(3), 1102.
Article CAS PubMed PubMed Central Google Scholar
Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83.
Article CAS PubMed PubMed Central Google Scholar
Guo, X., Ding, X., & Dong, J. (2022). Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination. Nature Communications, 13(1), 2438.
Article CAS PubMed PubMed Central Google Scholar
Brägelmann, J., Lorenz, C., Borchmann, S., Nishii, K., Wegner, J., Meder, L., Ostendorp, J., Ast, D. F., Heimsoeth, A., Nakasuka, T., & Hirabae, A. (2021). MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nature Communications, 12(1), 5505.
Article PubMed PubMed Central Google Scholar
Sharifi-Rad, J., Bahukhandi, A., Dhyani, P., Sati, P., Capanoglu, E., Docea, A. O., Al-Harrasi, A., Dey, A., & Calina, D. (2021). Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Frontiers in Nutrition, 8, 664197.
Article PubMed PubMed Central Google Scholar
Sharifi‐Rad, M., Berkay Yılmaz, Y., Antika, G., Salehi, B., Tumer, T. B., Kulandaisamy Venil, C., Das, G., Patra, J. K., Karazhan, N., Akram, M., & Iqbal, M. (2021a). Phytochemical constituents, biological activities, and health‐promoting effects of the genus Origanum. Phytotherapy Research, 35(1), 95–121.
Sharifi-Rad, J., Quispe, C., Kumar, M., Akram, M., Amin, M., Iqbal, M., Koirala, N., Sytar, O., Kregiel, D., Nicola, S., & Ertani, A. (2022). Hyssopus essential oil: an update of its phytochemistry, biological activities, and safety profile. Oxidative Medicine and Cellular Longevity, 2022(1), 8442734.
PubMed PubMed Central Google Scholar
Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., Szopa, A., Sharifi-Rad, J., Docea, A. O., Mardare, I., & Calina, D. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22(1), 206.
Article CAS PubMed PubMed Central Google Scholar
Hossain, R., Sarkar, C., Hassan, S. M. H., Khan, R. A., Arman, M., Ray, P., Islam, M. T., Daştan, S. D., Sharifi-Rad, J., Almarhoon, Z. M., & Martorell, M. (2022). In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chinese Journal of Integrative Medicine, 28(3), 249–256.
Article CAS PubMed Google Scholar
Islam, M. S., Quispe, C., Hossain, R., Islam, M. T., Al-Harrasi, A., Al-Rawahi, A., Martorell, M., Mamurova, A., Seilkhan, A., Altybaeva, N., & Abdullayeva, B. (2021). Neuropharmacological effects of quercetin: a literature-based review. Frontiers in Pharmacology, 12, 665031.
Article CAS PubMed PubMed Central Google Scholar
Shutenko, Z., Henry, Y., Pinard, E., Seylaz, J., Potier, P., Berthet, F., Girard, P., & Sercombe, R. (1999). Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharmacol, 57(2), 199–208.
Article CAS PubMed Google Scholar
Iio, M., Ono, Y., Kai, S., & Fukumoto, M. (1986). Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase. Journal of Nutritional Science and Vitaminology, 32(6), 635–642.
Article CAS PubMed Google Scholar
Friesenecker, B., Tsai, A. G., Allegra, C., & Intaglietta, M. (1994). Oral administration of purified micronized flavonoid fraction suppresses leukocyte adhesion in ischemia-reperfusion injury: in vivo observations in the hamster skin fold. Journal of Vascular Research, 14(1-2), 50–55.
Rahman, A., Shahabuddin, N., Hadi, S. M., & Parish, J. H. (1990). Complexes involving quercetin, DNA and Cu (II). Carcinogenesis, 11(11), 2001–2003.
Article CAS PubMed Google Scholar
Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., Nabavi, S. M., & Bishayee, A. (2016). Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients, 8(9), 529.
Article PubMed PubMed Central Google Scholar
Asgharian, P., Tazekand, A. P., Hosseini, K., Forouhandeh, H., Ghasemnejad, T., Ranjbar, M., Hasan, M., Kumar, M., Beirami, S. M., Tarhriz, V., & Soofiyani, S. R. (2022). Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell International, 22(1), 257.
Article CAS PubMed PubMed Central Google Scholar
Cheung, K. L., & Kong, A. N. (2010). Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. The AAPS Journal, 12, 87–97.
Article CAS PubMed Google Scholar
Fisher, M. L., Ciavattone, N., Grun, D., Adhikary, G., & Eckert, R. L. (2017). Sulforaphane reduces YAP/∆ Np63α signaling to reduce cancer stem cell survival and tumor formation. Oncotarget, 8(43), 73407.
Article PubMed PubMed Central Google Scholar
Liu, P., Atkinson, S. J., Akbareian, S. E., Zhou, Z., Munsterberg, A., Robinson, S. D., & Bao, Y. (2017). Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Scientific Reports, 7(1), 12651.
Article PubMed PubMed Central Google Scholar
Li, Q. Q., Xie, Y. K., Wu, Y., Li, L. L., Liu, Y., Miao, X. B., Liu, Q. Z., Yao, K. T., & Xiao, G. H. (2017). Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget, 8(7), 12067.
Article PubMed PubMed Central Google Scholar
Wu, S., Zhou, Y., Yang, G., Tian, H., Geng, Y., Hu, Y., Lin, K., & Wu, W. (2017). Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncology Reports, 37(5), 2829–2838.
Article CAS PubMed Google Scholar
Paolini, M., Perocco, P., Canistro, D., Valgimigli, L., Pedulli, G. F., Iori, R., Croce, C. D., Cantelli-Forti, G., Legator, M. S., & Abdel-Rahman, S. Z. (2004). Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis, 25(1), 61–67.
Article CAS PubMed Google Scholar
Chen, C. T., Hsieh, M. J., Hsieh, Y. H., Hsin, M. C., Chuang, Y. T., Yang, S. F., Yang, J. S., & Lin, C. W. (2018). Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget, 9(25), 17564.
Comments (0)