Synergistic Inhibition of Breast Carcinoma Cell Proliferation by Quercetin and Sulforaphane via Activation of the ERK/MAPK Pathway

Zhang, C. L., Huang, T., Wu, B. L., He, W. X., & Liu, D. (2017). Stem cells in cancer therapy: opportunities and challenges. Oncotarget, 8(43), 75756.

Article  PubMed  PubMed Central  Google Scholar 

Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25, 1–18.

Article  Google Scholar 

Choudhuri, S., Chanderbhan, R., & Mattia, A. (2018). Carcinogenesis: mechanisms and models. In Veterinary Toxicology (pp. 339–354). Academic Press.

Mao, J. J., Pillai, G. G., Andrade, C. J., Ligibel, J. A., Basu, P., Cohen, L., Khan, I. A., Mustian, K. M., Puthiyedath, R., Dhiman, K. S., & Lao, L. (2022). Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA: A Cancer Journal for Clinicians, 72(2), 144–164.

PubMed  Google Scholar 

Shi, A., Liu, L., Li, S., & Qi, B. (2024). Natural products targeting the MAPK-signaling pathway in cancer: overview. Journal of Cancer Research and Clinical Oncology, 150(1), 6.

Article  PubMed  PubMed Central  Google Scholar 

Park, H. B., & Baek, K. H. (2022). E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877(3), 188736.

Article  CAS  PubMed  Google Scholar 

He, Y., & Meng, X. (2020). MAPK signaling: emerging roles in lateral root formation. Trends in Plant Science, 25(2), 126–129.

Article  CAS  PubMed  Google Scholar 

Lee, S., Rauch, J., & Kolch, W. (2020). Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. International Journal of Molecular Sciences, 21(3), 1102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, X., Ding, X., & Dong, J. (2022). Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination. Nature Communications, 13(1), 2438.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brägelmann, J., Lorenz, C., Borchmann, S., Nishii, K., Wegner, J., Meder, L., Ostendorp, J., Ast, D. F., Heimsoeth, A., Nakasuka, T., & Hirabae, A. (2021). MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nature Communications, 12(1), 5505.

Article  PubMed  PubMed Central  Google Scholar 

Sharifi-Rad, J., Bahukhandi, A., Dhyani, P., Sati, P., Capanoglu, E., Docea, A. O., Al-Harrasi, A., Dey, A., & Calina, D. (2021). Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Frontiers in Nutrition, 8, 664197.

Article  PubMed  PubMed Central  Google Scholar 

Sharifi‐Rad, M., Berkay Yılmaz, Y., Antika, G., Salehi, B., Tumer, T. B., Kulandaisamy Venil, C., Das, G., Patra, J. K., Karazhan, N., Akram, M., & Iqbal, M. (2021a). Phytochemical constituents, biological activities, and health‐promoting effects of the genus Origanum. Phytotherapy Research, 35(1), 95–121.

Article  PubMed  Google Scholar 

Sharifi-Rad, J., Quispe, C., Kumar, M., Akram, M., Amin, M., Iqbal, M., Koirala, N., Sytar, O., Kregiel, D., Nicola, S., & Ertani, A. (2022). Hyssopus essential oil: an update of its phytochemistry, biological activities, and safety profile. Oxidative Medicine and Cellular Longevity, 2022(1), 8442734.

PubMed  PubMed Central  Google Scholar 

Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., Szopa, A., Sharifi-Rad, J., Docea, A. O., Mardare, I., & Calina, D. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22(1), 206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hossain, R., Sarkar, C., Hassan, S. M. H., Khan, R. A., Arman, M., Ray, P., Islam, M. T., Daştan, S. D., Sharifi-Rad, J., Almarhoon, Z. M., & Martorell, M. (2022). In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chinese Journal of Integrative Medicine, 28(3), 249–256.

Article  CAS  PubMed  Google Scholar 

Islam, M. S., Quispe, C., Hossain, R., Islam, M. T., Al-Harrasi, A., Al-Rawahi, A., Martorell, M., Mamurova, A., Seilkhan, A., Altybaeva, N., & Abdullayeva, B. (2021). Neuropharmacological effects of quercetin: a literature-based review. Frontiers in Pharmacology, 12, 665031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shutenko, Z., Henry, Y., Pinard, E., Seylaz, J., Potier, P., Berthet, F., Girard, P., & Sercombe, R. (1999). Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharmacol, 57(2), 199–208.

Article  CAS  PubMed  Google Scholar 

Iio, M., Ono, Y., Kai, S., & Fukumoto, M. (1986). Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase. Journal of Nutritional Science and Vitaminology, 32(6), 635–642.

Article  CAS  PubMed  Google Scholar 

Friesenecker, B., Tsai, A. G., Allegra, C., & Intaglietta, M. (1994). Oral administration of purified micronized flavonoid fraction suppresses leukocyte adhesion in ischemia-reperfusion injury: in vivo observations in the hamster skin fold. Journal of Vascular Research, 14(1-2), 50–55.

CAS  Google Scholar 

Rahman, A., Shahabuddin, N., Hadi, S. M., & Parish, J. H. (1990). Complexes involving quercetin, DNA and Cu (II). Carcinogenesis, 11(11), 2001–2003.

Article  CAS  PubMed  Google Scholar 

Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., Nabavi, S. M., & Bishayee, A. (2016). Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients, 8(9), 529.

Article  PubMed  PubMed Central  Google Scholar 

Asgharian, P., Tazekand, A. P., Hosseini, K., Forouhandeh, H., Ghasemnejad, T., Ranjbar, M., Hasan, M., Kumar, M., Beirami, S. M., Tarhriz, V., & Soofiyani, S. R. (2022). Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell International, 22(1), 257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung, K. L., & Kong, A. N. (2010). Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. The AAPS Journal, 12, 87–97.

Article  CAS  PubMed  Google Scholar 

Fisher, M. L., Ciavattone, N., Grun, D., Adhikary, G., & Eckert, R. L. (2017). Sulforaphane reduces YAP/∆ Np63α signaling to reduce cancer stem cell survival and tumor formation. Oncotarget, 8(43), 73407.

Article  PubMed  PubMed Central  Google Scholar 

Liu, P., Atkinson, S. J., Akbareian, S. E., Zhou, Z., Munsterberg, A., Robinson, S. D., & Bao, Y. (2017). Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Scientific Reports, 7(1), 12651.

Article  PubMed  PubMed Central  Google Scholar 

Li, Q. Q., Xie, Y. K., Wu, Y., Li, L. L., Liu, Y., Miao, X. B., Liu, Q. Z., Yao, K. T., & Xiao, G. H. (2017). Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget, 8(7), 12067.

Article  PubMed  PubMed Central  Google Scholar 

Wu, S., Zhou, Y., Yang, G., Tian, H., Geng, Y., Hu, Y., Lin, K., & Wu, W. (2017). Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncology Reports, 37(5), 2829–2838.

Article  CAS  PubMed  Google Scholar 

Paolini, M., Perocco, P., Canistro, D., Valgimigli, L., Pedulli, G. F., Iori, R., Croce, C. D., Cantelli-Forti, G., Legator, M. S., & Abdel-Rahman, S. Z. (2004). Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis, 25(1), 61–67.

Article  CAS  PubMed  Google Scholar 

Chen, C. T., Hsieh, M. J., Hsieh, Y. H., Hsin, M. C., Chuang, Y. T., Yang, S. F., Yang, J. S., & Lin, C. W. (2018). Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget, 9(25), 17564.

Article  PubMed 

Comments (0)

No login
gif