Abramoff, B., & Caldera, F. E. (2020). Osteoarthritis: pathology, diagnosis, and treatment options. Medical Clinics of North America, 104(2), 293–311. https://doi.org/10.1016/j.mcna.2019.10.007.
Martel-Pelletier, J., Barr, A. J., Cicuttini, F. M., Conaghan, P. G., Cooper, C., Goldring, M. B., Goldring, S. R., Jones, G., Teichtahl, A. J., & Pelletier, J. P. (2016). Osteoarthritis. Nature Reviews Disease Primers, 2, 16072. https://doi.org/10.1038/nrdp.2016.72.
Jiang, Y. (2022). Osteoarthritis year in review 2021: Biology. Osteoarthritis Cartilage, 30(2), 207–215. https://doi.org/10.1016/j.joca.2021.11.009.
Article PubMed CAS Google Scholar
Xu, F., Wu, Q., Li, L., Gong, J., Huo, R., & Cui, W. (2021). Icariside II: Anticancer potential and molecular targets in solid cancers. Front Pharmacol, 12, 663776. https://doi.org/10.3389/fphar.
Article PubMed PubMed Central Google Scholar
Gao, J., Ma, C., Xia, D., Chen, N., Zhang, J., Xu, F., Li, F., He, Y., & Gong, Q. (2023). Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway. British Journal of Pharmacology, 180(3), 308–329. https://doi.org/10.1111/bph.15961.
Article PubMed CAS Google Scholar
Yuan, D., Guo, T., Qian, H., Ge, H., Zhao, Y., Huang, A., Wang, X., Cao, X., Zhu, D., He, C., & Yu, H. (2022). Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Development Research, 83(6), 1383–1393. https://doi.org/10.1002/ddr.21967.
Article PubMed CAS Google Scholar
Li, Y., Feng, L., Xie, D., Lin, M., Li, Y., Chen, N., Yang, D., Gao, J., Zhu, Y., & Gong, Q. (2022). Icariside II, a naturally occurring SIRT3 agonist, protects against myocardial infarction through the AMPK/PGC-1α/apoptosis signaling pathway. Antioxidants, 11(8), 1465. https://doi.org/10.3390/antiox11081465.
Article PubMed PubMed Central CAS Google Scholar
Li, Y., Li, Y., Chen, N., Feng, L., Gao, J., Zeng, N., He, Z., & Gong, Q. (2022). Icariside II exerts anti-type 2 diabetic effect by targeting PPARα/γ: involvement of ROS/NF-κB/IRS1 signaling pathway. Antioxidants, 11(9), 1705. https://doi.org/10.3390/antiox11091705.
Article PubMed PubMed Central CAS Google Scholar
Banks, C. A., Boanca, G., Lee, Z. T., Eubanks, C. G., Hattem, G. L., Peak, A., Weems, L. E., Conkright, J. J., Florens, L., & Washburn, M. P. (2016). TNIP2 is a hub protein in the NF-κB network with both protein and RNA mediated interactions. Molecular & Cellular Proteomics, 15(11), 3435–3449. https://doi.org/10.1074/mcp.M116.060509.
Xie, H., Yang, M., Zhang, B., Liu, M., & Han, S. (2017). Protective role of TNIP2 in myocardial injury induced by acute pancreatitis and its mechanism. Medical Science Monitor, 23, 5650–5656. https://doi.org/10.12659/msm.904398.
Article PubMed PubMed Central CAS Google Scholar
Voelkl, J., Tuffaha, R., Luong, T. T. D., Zickler, D., Masyout, J., Feger, M., Verheyen, N., Blaschke, F., Kuro-O, M., Tomaschitz, A., Pilz, S., Pasch, A., Eckardt, K. U., Scherberich, J. E., Lang, F., Pieske, B., & Alesutan, I. (2018). Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF-κB. Journal of the American Society of Nephrology, 29(6), 1636–1648. https://doi.org/10.1681/ASN.2017050492.
Article PubMed PubMed Central CAS Google Scholar
Wang, W., Gao, J., & Wang, F. (2017). MiR-663a/MiR-423-5p are involved in the pathogenesis of lupus nephritis via modulating the activation of NF-κB by targeting TNIP2. American Journal of Translational Research, 9(8), 3796–3803.
PubMed PubMed Central CAS Google Scholar
Dai, T., Zhao, X., Li, Y., Yu, L., Li, Y., Zhou, X., & Gong, Q. (2020). miR-423 promotes breast cancer invasion by activating NF-κB signaling. OncoTargets and Therapy, 13, 5467–5478. https://doi.org/10.2147/OTT.S236514.
Article PubMed PubMed Central CAS Google Scholar
Qian, X., Wang, Y., Li, X., Li, Y., & Li, L. (2023). TNFAIP3 interacting protein 2 relieves lipopolysaccharide (LPS)-induced inflammatory injury in endometritis by inhibiting NF-kappaB activation. Immunity, Inflammation & Disease, 11(10), e970. https://doi.org/10.1002/iid3.970.
Minnig, M. C. C., Golightly, Y. M., & Nelson, A. E. (2024). Epidemiology of osteoarthritis: literature update 2022-2023. Current Opinion in Rheumatology, 36(2), 108–112. https://doi.org/10.1097/BOR.0000000000000985.
Perruccio, A. V., Young, J. J., Wilfong, J. M., Denise Power, J., Canizares, M., & Badley, E. M. (2024). Osteoarthritis year in review 2023: Epidemiology & therapy. Osteoarthritis Cartilage, 32(2), 159–165. https://doi.org/10.1016/j.joca.2023.11.012.
Diamond, L. E., Grant, T., & Uhlrich, S. D. (2024). Osteoarthritis year in review 2023: Biomechanics. Osteoarthritis Cartilage, 32(2), 138–147. https://doi.org/10.1016/j.joca.2023.11.015.
Jarraya, M., Guermazi, A., & Roemer, F. W. (2024). Osteoarthritis year in review 2023: Imaging. Osteoarthritis Cartilage, 32(1), 18–27. https://doi.org/10.1016/j.joca.2023.10.005.
Yang, M., Jiang, L., Wang, Q., Chen, H., & Xu, G. (2017). Traditional Chinese medicine for knee osteoarthritis: An overview of systematic review. PLoS One, 12(12), e0189884. https://doi.org/10.1371/journal.pone.0189884.
Article PubMed PubMed Central CAS Google Scholar
Wu, Y. R., Kuang, G. Y., Lu, F. G., Wang, H. X., Lu, M., & Zhou, Q. (2019). Pathological relationship between intestinal flora and osteoarthritis and intervention mechanism of Chinese medicine. Chinese Journal of Integrative Medicine, 25(9), 716–720. https://doi.org/10.1007/s11655-019-3224-2.
Szychlinska, M. A., Ravalli, S., & Musumeci, G. (2019). Pleiotropic effect of fibrates on senescence and autophagy in osteoarthritis. EBioMedicine, 45, 11–12. https://doi.org/10.1016/j.ebiom.2019.07.018.
Article PubMed PubMed Central Google Scholar
Rockel, J. S., & Kapoor, M. (2016). Autophagy: Controlling cell fate in rheumatic diseases. Nature Reviews Rheumatology, 12(9), 517–531. https://doi.org/10.1038/nrrheum.2016.92.
Article PubMed CAS Google Scholar
Shi, C. J., Li, S. Y., Shen, C. H., Pan, F. F., Deng, L. Q., Fu, W. M., Wang, J. Y., & Zhang, J. F. (2022). Icariside II suppressed tumorigenesis by epigenetically regulating the circβ-catenin-Wnt/β-catenin axis in colorectal cancer. Bioorganic Chemistry, 124, 105800. https://doi.org/10.1016/j.bioorg.2022.105800.
Article PubMed CAS Google Scholar
Fan, W., & Zhou, J. (2023). Icariside II suppresses ferroptosis to protect against MPP+-Induced Parkinson’s disease through Keap1/Nrf2/GPX4 signaling. Chinese Journal of Physiology, 66(6), 437–445. https://doi.org/10.4103/cjop.CJOP-D-23-00107.
Article PubMed CAS Google Scholar
Tian, C., Gao, F., Li, X., & Li, Z. (2020). Icariside II attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-κB and STAT3 in an asthma mouse model. Experimental & Molecular Pathology, 113, 104373. https://doi.org/10.1016/j.yexmp.2020.104373.
Chen, L., Wang, L., Zhou, G. F., Liu, Y., Chen, X., Xie, X. Y., Wen, Q. X., Li, C. L., Yang, J., & Chen, G. J. (2023). TNIP2 inhibits amyloidogenesis by regulating the 3’UTR of BACE1: An in vitro study. Neuroscience Letters, 808, 137265. https://doi.org/10.1016/j.neulet.2023.137265.
Article PubMed CAS Google Scholar
Yan, Z., Chen, Y., Zhang, X., Hua, L., & Huang, L. (2021). Neuroprotective function of TNFAIP3 interacting protein 2 against oxygen and glucose deprivation/reoxygenation-induced injury in hippocampal neuronal HT22 cells through regulation of the TLR4/MyD88/NF-κB pathway. Neuropsychiatric Disease and Treatment, 17, 2219–2227. https://doi.org/10.2147/NDT.S308360.
Comments (0)