Validation and in silico function prediction of circtial1 as a novel marker of abnormal lung development in nitrofen-induced congenital diaphragmatic hernia (CDH)

Liu C-X, Chen L-L (2022) Circular RNAs: characterization, cellular roles, and applications. Cell 185:2390. https://doi.org/10.1016/j.cell.2022.06.001

Article  CAS  PubMed  Google Scholar 

Hwang HJ, Kim YK (2024) Molecular mechanisms of circular RNA translation. Exp Mol Med 56:1272–1280. https://doi.org/10.1038/s12276-024-01220-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nisar S, Bhat AA, Singh M et al (2021) Insights into the role of CircRNAs: biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol 9:617281

Article  PubMed  PubMed Central  Google Scholar 

He AT, Liu J, Li F, Yang BB (2021) Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther 6:1–14. https://doi.org/10.1038/s41392-021-00569-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chuang T-J, Chiang T-W (2023) Chen C-Y Assessing the impacts of various factors on circular RNA reliability. Life Sci Alliance 6(5):e202201793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19:188–206. https://doi.org/10.1038/s41571-021-00585-y

Article  CAS  PubMed  Google Scholar 

Jank M, Boettcher M, Keijzer R (2024) Surgical management of the diaphragmatic defect in congenital diaphragmatic hernia: a contemporary review. World J Pediatr Surg 7:e000747. https://doi.org/10.1136/wjps-2023-000747

Article  PubMed  PubMed Central  Google Scholar 

Jank M, Doktor F, Zani A, Keijzer R (2024) Cellular origins and translational approaches to congenital diaphragmatic hernia. Semin Pediatr Surg 33:151444. https://doi.org/10.1016/j.sempedsurg.2024.151444

Article  PubMed  Google Scholar 

Zani A, Chung WK, Deprest J et al (2022) Congenital diaphragmatic hernia. Nat Rev Dis Primer 8:1–20. https://doi.org/10.1038/s41572-022-00362-w

Article  Google Scholar 

Pereira-Terra P, Deprest JA, Kholdebarin R et al (2015) Unique tracheal fluid MicroRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg 262:1130–1140. https://doi.org/10.1097/SLA.0000000000001054

Article  PubMed  Google Scholar 

Fabietti I, Nardi T, Favero C et al (2021) Extracellular vesicles and their miRNA content in amniotic and tracheal fluids of fetuses with severe congenital diaphragmatic hernia undergoing fetal intervention. Cells 10:1493. https://doi.org/10.3390/cells10061493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrera-Rivero M, Zhang R, Heilmann-Heimbach S et al (2018) Circulating microRNAs are associated with pulmonary hypertension and development of chronic lung disease in congenital diaphragmatic hernia. Sci Rep 8:10735. https://doi.org/10.1038/s41598-018-29153-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piersigilli F, Syed M, Lam TT et al (2020) An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling. J Perinatol Off J Calif Perinat Assoc 40:952–961. https://doi.org/10.1038/s41372-020-0623-3

Article  CAS  Google Scholar 

Wagner R, Jha A, Ayoub L et al (2020) Can circular RNAs be used as prenatal biomarkers for congenital diaphragmatic hernia? Eur Respir J 55:1900514. https://doi.org/10.1183/13993003.00514-2019

Article  PubMed  Google Scholar 

Digby B, Finn S, Broin PÓ (2024) Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 25:527. https://doi.org/10.1186/s12864-024-10420-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dudekula DB, Panda AC, Grammatikakis I et al (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42. https://doi.org/10.1080/15476286.2015.1128065

Article  PubMed  Google Scholar 

Wu W, Ji P, Zhao F (2020) CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 21:101. https://doi.org/10.1186/s13059-020-02018-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dori M, Caroli J, Forcato M (2022) Circr, a computational tool to identify miRNA:circRNA associations. Front Bioinforma 2:852834. https://doi.org/10.3389/fbinf.2022.852834

Article  Google Scholar 

Chiang T-W, Mai T-L, Chuang T-J (2022) CircMiMi: a stand-alone software for constructing circular RNA-microRNA-mRNA interactions across species. BMC Bioinformatics 23:164. https://doi.org/10.1186/s12859-022-04692-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aufiero S, Reckman YJ, Tijsen AJ et al (2020) circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs. BMC Bioinformatics 21:164. https://doi.org/10.1186/s12859-020-3500-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dal Molin A, Gaffo E, Difilippo V et al (2022) CRAFT: a bioinformatics software for custom prediction of circular RNA functions. Brief Bioinform 23:bbab601. https://doi.org/10.1093/bib/bbab601

Article  CAS  Google Scholar 

Dal Molin A, Tretti Parenzan C, Gaffo E et al (2023) Discovery of fusion circular RNAs in leukemia with KMT2A::AFF1 rearrangements by the new software CircFusion. Brief Bioinform 24:bbac589. https://doi.org/10.1093/bib/bbac589

Article  CAS  Google Scholar 

Tretti Parenzan C, Molin AD, Longo G et al (2024) Functional relevance of circRNA aberrant expression in pediatric acute leukemia with KMT2A::AFF1 fusion. Blood Adv 8:1305–1319. https://doi.org/10.1182/bloodadvances.2023011291

Article  CAS  PubMed  Google Scholar 

Circular RNA Array Service | Arraystar. https://www.arraystar.com/circular-rna-array-service/. Accessed 21 Aug 2024

Marín RM, Vaníček J (2011) Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res 39:19–29. https://doi.org/10.1093/nar/gkq768

Article  CAS  PubMed  Google Scholar 

Kern F, Aparicio-Puerta E, Li Y et al (2021) miRTargetLink 2.0—interactive miRNA target gene and target pathway networks. Nucleic Acids Res 49:W409–W416. https://doi.org/10.1093/nar/gkab297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. https://doi.org/10.1093/bioinformatics/btz931

Article  CAS  PubMed  Google Scholar 

Davis MW, Jorgensen EM (2022) ApE, A plasmid editor: a freely available DNA manipulation and visualization program. Front Bioinforma 2:818619. https://doi.org/10.3389/fbinf.2022.818619

Article  Google Scholar 

Nucleotide BLAST: Search nucleotide databases using a nucleotide query. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch. Accessed 31 Aug 2024

Gene: tial1 (ENSRNOG00000020271) - Summary - Rattus_norvegicus - Ensembl genome browser 112. https://useast.ensembl.org/Rattus_norvegicus/Gene/Summary?db=core;g=ENSRNOG00000020271;r=1:183009253-183031637. Accessed 31 Aug 2024

Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1. https://doi.org/10.1186/gb-2003-5-1-r1

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif