Valproate Administration to Adult 5xFAD Mice Upregulates Expression of Neprilysin and Improves Olfaction and Memory

Barresi M, Ciurleo R, Giacoppo S, Foti Cuzzola V, Celi D, Bramanti P, Marino S (2012) Evaluation of olfactory dysfunction in neurodegenerative diseases. J Neurol Sci 323:16–24. https://doi.org/10.1016/j.jns.2012.08.028

Article  PubMed  Google Scholar 

Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10:94–100. https://doi.org/10.1038/embor.2008.222

Article  CAS  PubMed  Google Scholar 

Devi L, Ohno M (2015) A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 8:19. https://doi.org/10.1186/s13041-015-0110-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–339. https://doi.org/10.1038/nrneurol.2012.80

Article  CAS  PubMed  Google Scholar 

Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171:241–251. https://doi.org/10.2353/ajpath.2007.070105

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friesen M, Ziegler-Waldkirch S, Egenolf M, d’Errico P, Helm C, Mezö C, Dokalis N, Erny D, Katzmarski N, Coelho R, Loreth D, Prinz M, Meyer-Luehmann M (2022) Distinct Aβ pathology in the olfactory bulb and olfactory deficits in a mouse model of Aβ and α-syn co-pathology. Brain Pathol 32(3):e13032. https://doi.org/10.1111/bpa.13032

Article  CAS  PubMed  Google Scholar 

Hanson LR, Hafez D, Svitak AL, Burns RB, Li X, Frey WH 2nd, Marr RA (2011) Intranasal phosphoramidon increases β-amyloid levels in wild-type and NEP/NEP2-deficient mice. J Mol Neurosci 43:424–427. https://doi.org/10.1007/s12031-010-9460-8

Article  CAS  PubMed  Google Scholar 

Hüttenrauch M, Baches S, Gerth J, Bayer TA, Weggen S, Wirths O (2015) Neprilysin deficiency alters the neuropathological and behavioral phenotype in the 5XFAD mouse model of Alzheimer's disease. J Alzheimers Dis 44:1291–302. https://doi.org/10.3233/JAD-142463

Kalinin S, Richardson JC, Feinstein DL (2009) A PPARγ agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 6:431–437. https://doi.org/10.2174/156720509789207949

Article  CAS  PubMed  Google Scholar 

Lane G, Zhou G, Noto T, Zelano C (2020) Assessment of direct knowledge of the human olfactory system. Exp Neurol 329:113304. https://doi.org/10.1016/j.expneurol.2020.113304

Article  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262)

Article  CAS  PubMed  Google Scholar 

Long ZM, Zhao L, Jiang R, Wang KJ, Luo SF, Zheng M, Li XF, He GQ (2015) Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3β signaling pathway in an Alzheimer’s disease model. CNS Neurosci Ther 21:887–897. https://doi.org/10.1111/cns.12445

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyons-Warren AM, Herman I, Hunt PJ, Arenkiel BR (2021) A systematic-review of olfactory deficits in neurodevelopmental disorders: from mouse to human. Neurosci Biobehav Rev 125:110–121. https://doi.org/10.1016/j.neubiorev.2021.02.024

Article  PubMed  PubMed Central  Google Scholar 

Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23:1992–1996. https://doi.org/10.1523/JNEUROSCI.23-06-01992.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Midroit M, Chalençon L, Renier N, Milton A, Thevenet M, Sacquet J, Breton M, Forest J, Noury N, Richard M, Raineteau O, Ferdenzi C, Fournel A, Wesson DW, Bensafi M, Didier A, Mandairon N (2021) Neural processing of the reward value of pleasant odorants. Curr Biol 31:1592-1605.e9. https://doi.org/10.1016/j.cub.2021.01.066

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260. https://doi.org/10.1016/0023-9690(81)90020-5

Article  Google Scholar 

Mouri A, Zou LB, Iwata N, Saido TC, Wang D, Wang MW, Noda Y, Nabeshima T (2006) Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid β and impairment of learning and memory. Behav Brain Res 168:83–91. https://doi.org/10.1016/j.bbr.2005.10.014

Article  CAS  PubMed  Google Scholar 

Murphy C (2019) Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol 15:11–24. https://doi.org/10.1038/s41582-018-0097-5

Article  CAS  PubMed  Google Scholar 

Murray EK, Varnum MM, Fernandez JL, de Vries GJ, Forger NG (2011) Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice. J Neuroendocrinol 23:906–914. https://doi.org/10.1111/j.1365-2826.2011.02196.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalivaeva NN, Turner AJ (2019) Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br J Pharmacol 176:3447–3463. https://doi.org/10.1111/bph.14593

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ (2012) Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Molecular Neurosci 46:569–577. https://doi.org/10.1007/s12031-011-9644-x

Article  CAS  Google Scholar 

Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235. https://doi.org/10.3389/fnagi.2014.00235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalivaeva NN, Zhuravin IA, Turner AJ (2020) Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 192:111363. https://doi.org/10.1016/j.mad.2020.111363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nocera S, Simon A, Fiquet O, Chen Y, Gascuel J, Datiche F, Schneider N, Epelbaum J, Viollet C (2019) Somatostatin serves a modulatory role in the mouse olfactory bulb: neuroanatomical and behavioral evidence. Front Behav Neurosci 13:61. https://doi.org/10.3389/fnbeh.2019.00061

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oakley HO, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ornoy A, Echefu B, Becker M (2024) Valproic acid in pregnancy revisited: neurobehavioral, biochemical and molecular changes affecting the embryo and fetus in humans and in animals: a narrative review. Int J Mol Sci 25:390. https://doi.org/10.3390/ijms25010390

Article  CAS  Google Scholar 

Pádua MS, Guil-Guerrero JL, Lopes PA (2024) Behaviour hallmarks in Alzheimer’s disease 5xFAD mouse model. Int J Mol Sci 25:6766. https://doi.org/10.3390/ijms25126766

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif