Advanced Glycation End Products in Neurodegenerative Diseases

Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG (2016) Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. Cell Mol Life Sci 73:1685–1698. https://doi.org/10.1007/s00018-015-2091-z

Article  PubMed  CAS  Google Scholar 

Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ (2018) Advanced glycation end products modulate amyloidogenic APP processing and tau phosphorylation: a mechanistic link between glycation and the development of Alzheimer’s disease. ACS Chem Neurosci 9:988–1000. https://doi.org/10.1021/acschemneuro.7b00410

Article  PubMed  CAS  Google Scholar 

Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernández MA, Balbuena-Olvera AJ, Morales-Moreno ID, Argüero-Sánchez R, Schüle B, Guerra-Crespo M (2019) Alpha-synuclein physiology and pathology: a perspective on cellular structures and organelles. Front Neurosci 13:1399. https://doi.org/10.3389/fnins.2019.01399

Article  PubMed  Google Scholar 

Bhattacharya R, Alam MR, Kamal MA, Seo KJ, Singh LR (2023) AGE-RAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration. Front Mol Neurosci 16:1155175. https://doi.org/10.3389/fnmol.2023.1155175

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med Berl Ger 83:876–886. https://doi.org/10.1007/s00109-005-0688-7

Article  CAS  Google Scholar 

Brás IC, König A, Outeiro TF (2019) Glycation in Huntington’s disease: a possible modifier and target for intervention. J Huntingt Dis 8:245–256. https://doi.org/10.3233/JHD-190366

Article  CAS  Google Scholar 

Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193. https://doi.org/10.1038/s41593-020-0687-6

Article  PubMed  CAS  Google Scholar 

Byun K, Yoo Y, Son M, Lee J, Jeong G-B, Park YM, Salekdeh GH, Lee B (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55. https://doi.org/10.1016/j.pharmthera.2017.02.030

Article  PubMed  CAS  Google Scholar 

Cai Z, Qiao P-F, Wan C-Q, Cai M, Zhou N-K, Li Q (2018) Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis JAD 63:1223–1234. https://doi.org/10.3233/JAD-180098

Article  PubMed  CAS  Google Scholar 

Castellani R, Smith MA, Richey GL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737:195–200. https://doi.org/10.1016/0006-8993(96)00729-9

Article  PubMed  CAS  Google Scholar 

Chen L, Wei Y, Wang X, He R (2009) D-Ribosylated tau forms globular aggregates with high cytotoxicity. Cell Mol Life Sci CMLS 66:2559–2571. https://doi.org/10.1007/s00018-009-0058-7

Article  PubMed  CAS  Google Scholar 

Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS ONE 5:e9052. https://doi.org/10.1371/journal.pone.0009052

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816–830. https://doi.org/10.1097/01.jnen.0000179050.54522.5a

Article  PubMed  Google Scholar 

Derk J, MacLean M, Juranek J, Schmidt AM (2018) The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J Alzheimer’s Dis Park 8(1):421. https://doi.org/10.4172/2161-0460.1000421

Dobi A, Rosanaly S, Devin A, Baret P, Meilhac O, Harry GJ, d’Hellencourt CL, Rondeau P (2021) Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: the role of mitochondria and oxidative stress. Microvasc Res 133:104098. https://doi.org/10.1016/j.mvr.2020.104098

Article  PubMed  CAS  Google Scholar 

DSM, https://www.psychiatry.org:443/psychiatrists/practice/dsm

Fang F, Yu Q, Arancio O, Chen D, Gore SS, Yan SS, Yan SF (2018) RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity. Hum Mol Genet 27:1002–1014. https://doi.org/10.1093/hmg/ddy017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5. https://doi.org/10.1016/j.bbrc.2008.02.163

Article  PubMed  CAS  Google Scholar 

Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP (2023) Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson’s disease. J Neurochem 168(8):1608–24. https://doi.org/10.1111/jnc.15890

Article  PubMed  CAS  Google Scholar 

Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS (2019) Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 30:49–57. https://doi.org/10.1093/glycob/cwz073

Article  PubMed  CAS  Google Scholar 

Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis. Cell 97:889–901. https://doi.org/10.1016/S0092-8674(00)80801-6

Article  PubMed  CAS  Google Scholar 

Jangde N, Ray R, Rai V (2020) RAGE and its ligands: from pathogenesis to therapeutics. Crit Rev Biochem Mol Biol 55:555–575. https://doi.org/10.1080/10409238.2020.1819194

Article  PubMed  CAS  Google Scholar 

Jules J, Maiguel D, Hudson BI (2013) Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS ONE 8:e78267. https://doi.org/10.1371/journal.pone.0078267

Article  PubMed  PubMed Central  CAS  Google Scholar 

Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M (2022) Role of RAGE in the pathogenesis of neurological disorders. Neurosci Bull 38:1248–1262. https://doi.org/10.1007/s12264-022-00878-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kamynina A, Esteras N, Koroev DO, Angelova PR, Volpina OM, Abramov AY (2021) Activation of RAGE leads to the release of glutamate from astrocytes and stimulates calcium signal in neurons. J Cell Physiol 236:6496–6506. https://doi.org/10.1002/jcp.30324

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khalid M, Petroianu G, Adem A (2022) Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules 12:542. https://doi.org/10.3390/biom12040542

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ko S-Y, Lin Y-P, Lin Y-S, Chang S-S (2010) Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic Biol Med 49:474–480. https://doi.org/10.1016/j.freeradbiomed.2010.05.005

Article  PubMed  CAS  Google Scholar 

König A, Vicente Miranda H, Outeiro TF (2018) Alpha-synuclein glycation and the action of anti-diabetic agents in Parkinson’s disease. J Park Dis 8:33–43. https://doi.org/10.3233/JPD-171285

Article  CAS  Google Scholar 

Lee EJ, Park JH (2013) Receptor for advanced glycation endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform 11:224–229. https://doi.org/10.5808/GI.2013.11.4.224

Comments (0)

No login
gif