Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG (2016) Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. Cell Mol Life Sci 73:1685–1698. https://doi.org/10.1007/s00018-015-2091-z
Article PubMed CAS Google Scholar
Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ (2018) Advanced glycation end products modulate amyloidogenic APP processing and tau phosphorylation: a mechanistic link between glycation and the development of Alzheimer’s disease. ACS Chem Neurosci 9:988–1000. https://doi.org/10.1021/acschemneuro.7b00410
Article PubMed CAS Google Scholar
Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernández MA, Balbuena-Olvera AJ, Morales-Moreno ID, Argüero-Sánchez R, Schüle B, Guerra-Crespo M (2019) Alpha-synuclein physiology and pathology: a perspective on cellular structures and organelles. Front Neurosci 13:1399. https://doi.org/10.3389/fnins.2019.01399
Bhattacharya R, Alam MR, Kamal MA, Seo KJ, Singh LR (2023) AGE-RAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration. Front Mol Neurosci 16:1155175. https://doi.org/10.3389/fnmol.2023.1155175
Article PubMed PubMed Central CAS Google Scholar
Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med Berl Ger 83:876–886. https://doi.org/10.1007/s00109-005-0688-7
Brás IC, König A, Outeiro TF (2019) Glycation in Huntington’s disease: a possible modifier and target for intervention. J Huntingt Dis 8:245–256. https://doi.org/10.3233/JHD-190366
Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193. https://doi.org/10.1038/s41593-020-0687-6
Article PubMed CAS Google Scholar
Byun K, Yoo Y, Son M, Lee J, Jeong G-B, Park YM, Salekdeh GH, Lee B (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55. https://doi.org/10.1016/j.pharmthera.2017.02.030
Article PubMed CAS Google Scholar
Cai Z, Qiao P-F, Wan C-Q, Cai M, Zhou N-K, Li Q (2018) Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis JAD 63:1223–1234. https://doi.org/10.3233/JAD-180098
Article PubMed CAS Google Scholar
Castellani R, Smith MA, Richey GL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737:195–200. https://doi.org/10.1016/0006-8993(96)00729-9
Article PubMed CAS Google Scholar
Chen L, Wei Y, Wang X, He R (2009) D-Ribosylated tau forms globular aggregates with high cytotoxicity. Cell Mol Life Sci CMLS 66:2559–2571. https://doi.org/10.1007/s00018-009-0058-7
Article PubMed CAS Google Scholar
Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS ONE 5:e9052. https://doi.org/10.1371/journal.pone.0009052
Article PubMed PubMed Central CAS Google Scholar
Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816–830. https://doi.org/10.1097/01.jnen.0000179050.54522.5a
Derk J, MacLean M, Juranek J, Schmidt AM (2018) The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J Alzheimer’s Dis Park 8(1):421. https://doi.org/10.4172/2161-0460.1000421
Dobi A, Rosanaly S, Devin A, Baret P, Meilhac O, Harry GJ, d’Hellencourt CL, Rondeau P (2021) Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: the role of mitochondria and oxidative stress. Microvasc Res 133:104098. https://doi.org/10.1016/j.mvr.2020.104098
Article PubMed CAS Google Scholar
DSM, https://www.psychiatry.org:443/psychiatrists/practice/dsm
Fang F, Yu Q, Arancio O, Chen D, Gore SS, Yan SS, Yan SF (2018) RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity. Hum Mol Genet 27:1002–1014. https://doi.org/10.1093/hmg/ddy017
Article PubMed PubMed Central CAS Google Scholar
Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5. https://doi.org/10.1016/j.bbrc.2008.02.163
Article PubMed CAS Google Scholar
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP (2023) Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson’s disease. J Neurochem 168(8):1608–24. https://doi.org/10.1111/jnc.15890
Article PubMed CAS Google Scholar
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS (2019) Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 30:49–57. https://doi.org/10.1093/glycob/cwz073
Article PubMed CAS Google Scholar
Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis. Cell 97:889–901. https://doi.org/10.1016/S0092-8674(00)80801-6
Article PubMed CAS Google Scholar
Jangde N, Ray R, Rai V (2020) RAGE and its ligands: from pathogenesis to therapeutics. Crit Rev Biochem Mol Biol 55:555–575. https://doi.org/10.1080/10409238.2020.1819194
Article PubMed CAS Google Scholar
Jules J, Maiguel D, Hudson BI (2013) Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS ONE 8:e78267. https://doi.org/10.1371/journal.pone.0078267
Article PubMed PubMed Central CAS Google Scholar
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M (2022) Role of RAGE in the pathogenesis of neurological disorders. Neurosci Bull 38:1248–1262. https://doi.org/10.1007/s12264-022-00878-x
Article PubMed PubMed Central CAS Google Scholar
Kamynina A, Esteras N, Koroev DO, Angelova PR, Volpina OM, Abramov AY (2021) Activation of RAGE leads to the release of glutamate from astrocytes and stimulates calcium signal in neurons. J Cell Physiol 236:6496–6506. https://doi.org/10.1002/jcp.30324
Article PubMed PubMed Central CAS Google Scholar
Khalid M, Petroianu G, Adem A (2022) Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules 12:542. https://doi.org/10.3390/biom12040542
Article PubMed PubMed Central CAS Google Scholar
Ko S-Y, Lin Y-P, Lin Y-S, Chang S-S (2010) Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic Biol Med 49:474–480. https://doi.org/10.1016/j.freeradbiomed.2010.05.005
Article PubMed CAS Google Scholar
König A, Vicente Miranda H, Outeiro TF (2018) Alpha-synuclein glycation and the action of anti-diabetic agents in Parkinson’s disease. J Park Dis 8:33–43. https://doi.org/10.3233/JPD-171285
Lee EJ, Park JH (2013) Receptor for advanced glycation endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform 11:224–229. https://doi.org/10.5808/GI.2013.11.4.224
Comments (0)