GBD 2017 disease and injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.
Fernandes VRS, Cheng S, Lima JAC. Atherosclerosis imaging and heart failure. Heart Fail Rev. 2006;11:279–88. https://doi.org/10.1007/s10741-006-0229-7.
Jain CC, Borlaug BA. Performance and interpretation of invasive hemodynamic exercise testing. Chest. 2020;158:2119–29. https://doi.org/10.1016/j.chest.2020.05.552.
Article PubMed PubMed Central Google Scholar
Gevaert AB, Kataria R, Zannad F, et al. Heart failure with preserved ejection fraction: recent concepts in diagnosis, mechanisms and management. Heart. 2022;108:1342–50. https://doi.org/10.1136/heartjnl-2021-319605.
Adamson PD, Hunter A, Madsen DM, et al. High-sensitivity cardiac troponin I and the diagnosis of coronary artery disease in patients with suspected angina pectoris. Circ Cardiovasc Qual Outcomes. 2018;11:e004227. https://doi.org/10.1161/circoutcomes.117.004227.
Article PubMed PubMed Central Google Scholar
Cwikiel J, Seljeflot I, Fagerland, et al. High-sensitive cardiac Troponin T and exercise stress test for evaluation of angiographically significant coronary disease. Int J Cardiol. 2019;287:1–6. https://doi.org/10.1016/j.ijcard.2019.04.019.
Meijers WC, Bayes-Genis A, Mebazaa A. Circulating heart failure biomarkers beyond natriuretic peptides: review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur J Heart Fail. 2021;23:1610–32. https://doi.org/10.1002/ejhf.2346.
Article CAS PubMed Google Scholar
Yasue H, Yoshimura M, Sumida H. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195–203. https://doi.org/10.1161/01.cir.90.1.195.
Article CAS PubMed Google Scholar
Zhang X, Hu C, Wu HM, et al. Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin. 2021;42:1390–400. https://doi.org/10.1038/s41401-020-00557-5.
Article CAS PubMed Google Scholar
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol. 2023. https://doi.org/10.1038/s41569-023-00887-x. (Online ahead of print).
Lee DI, Zhu G, Sasaki T, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature. 2015;519:472–6. https://doi.org/10.1038/nature14332.
Article ADS CAS PubMed PubMed Central Google Scholar
Cao RY, Zheng H, Hong Y, et al. Cardiac rehabilitation with targeted intensity improves cardiopulmonary functions accompanying with reduced copeptin level in patients with coronary artery disease. J Cardiovasc Transl Res. 2021;14:317–26. https://doi.org/10.1007/s12265-020-10055-y.
McDonagh TA, Metra M, Adamo M, et al. ESC scientific document group, 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.
Article CAS PubMed Google Scholar
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145:e895–1032. https://doi.org/10.1161/CIR.0000000000001063.
Korta P, Pocjec E, Mazur-Bialy A. Irisin as a multifunctional protein: implications for health and certain diseases. Medicina. 2019;55:485. https://doi.org/10.3390/medicina55080485.
Article PubMed PubMed Central Google Scholar
Benomar K, Espiard S, Loyer C, Jannin A, Vantyghem MC. Atrial natriuretic hormones and metabolic syndrome: recent advances. Presse Med. 2018;47:116–24. https://doi.org/10.1016/j.lpm.2017.12.002.
Abd EI-Mottaleb NA, Galal HM, EI Maghraby KM, Gadallah AI. Serum irisin level in myocardial infarction patients with or without heart failure. Can J Physiol Pharmacol. 2019;97:932–8. https://doi.org/10.1139/cjpp-2018-0736.
Matsuo Y, Gleitsmann K, Mangner N, et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle. 2015;6:62–72. https://doi.org/10.1002/jcsm.12006.
Article PubMed PubMed Central Google Scholar
Lecker SH, Zavin A, Cao P, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ Heart Fail. 2012;5:812–8. https://doi.org/10.1161/CIRCHEARTFAILURE.112.969543.
Article CAS PubMed PubMed Central Google Scholar
Yu Q, Kou W, Xu X, et al. FNDC5/Irisin inhibits pathological cardiac hypertrophy. Clin Sci (Lond). 2019;133:611–27. https://doi.org/10.1042/CS20190016.
Article CAS PubMed Google Scholar
Maak S, Norheim F, Drevon CA, Erickson HP. Progress and challenges in the biology of FNDC5 and Irisin. Endocr Rev. 2021;42:436–56. https://doi.org/10.1210/endrev/bnab003.
Article PubMed PubMed Central Google Scholar
Cao RY, Zheng H, Redfearn D, Yang J. FNDC5: a novel player in metabolism and metabolic syndrome. Biochimie. 2019;158:111–6. https://doi.org/10.1016/j.biochi.2019.01.001.
Article CAS PubMed Google Scholar
Ho JE, Zern EK, Wooster L, et al. Differential clinical profiles, exercise responses, and outcomes associated with existing HFpEF definitions. Circulation. 2019;140:353–65. https://doi.org/10.1161/circulationaha.118.039136.
Article PubMed PubMed Central Google Scholar
Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018;138:861–70. https://doi.org/10.1161/circulationaha.118.034646.
Article PubMed PubMed Central Google Scholar
Hashemi D, Mende M, Trippel TD, et al. Evaluation of the HFA-PEFF score: results from the prospective DIAST-CHF cohort. ESC Heart Fail. 2022;9:4120–8. https://doi.org/10.1002/ehf2.14131.
Article PubMed PubMed Central Google Scholar
Wijk SS, Aizpurua AB, Rocca HB, et al. The HFA-PEFF and H2FPEF scores largely disagree in classifying patients with suspected heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23:838–40. https://doi.org/10.1002/ejhf.2019.
Pocock SJ, Ferreira JP, Packer M, et al. Biomarker-driven prognostic models in chronic heart failure with preserved ejection fraction: the EMPEROR-Preserved trial. Eur J Heart Fail. 2022;24:1869–78. https://doi.org/10.1002/ejhf.2607.
Article CAS PubMed Google Scholar
Schnabel R, Rupprecht HJ, Lackner KJ, Lubos E, Bickel C, Meyer J. Analysis of N-terminal-pro-brain natriuretic peptide and C-reactive protein for risk stratification in stable and unstable coronary artery disease: results from the AtheroGene study. Eur Heart J. 2005;26:241–9. https://doi.org/10.1093/eurheartj/ehi036.
Comments (0)