Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63–74. https://doi.org/10.2147/VHRM.S125065.
Article PubMed PubMed Central Google Scholar
Armstrong EJ, Armstrong DG. Critical limb ischemia. Vasc Med. 2021;26(2):228–31. https://doi.org/10.1177/1358863X20987611.
Levin SR, Arinze N, Siracuse JJ. Lower extremity critical limb ischemia: a review of clinical features and management. Trends Cardiovasc Med. 2020;30(3):125–30. https://doi.org/10.1016/j.tcm.2019.04.002.
Teraa M, Conte MS, Moll FL, Verhaar MC. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):e002938. https://doi.org/10.1161/JAHA.115.002938.
Mills JL Sr. Open bypass and endoluminal therapy: complementary techniques for revascularization in diabetic patients with critical limb ischaemia. Diabetes Metab Res Rev. 2008;24(Suppl 1):S34-39. https://doi.org/10.1002/dmrr.829.
Karimi A, Lauria AL, Aryavand B, Neville RF. Novel therapies for critical limb-threatening ischemia. Curr Cardiol Rep. 2022;24(5):513–7. https://doi.org/10.1007/s11886-022-01669-6.
Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells. 2018;36(2):161–71. https://doi.org/10.1002/stem.2751.
Morishita R, Shimamura M, Takeya Y, Nakagami H, Chujo M, Ishihama T, et al. Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan. Curr Gene Ther. 2020;20(1):25–35. https://doi.org/10.2174/1566523220666200516171447.
Article CAS PubMed Google Scholar
Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy. Curr Diab Rep. 2021;21(3):11. https://doi.org/10.1007/s11892-021-01378-4.
Article CAS PubMed PubMed Central Google Scholar
Barc P, Antkiewicz M, Sliwa B, Fraczkowska K, Guzinski M, Dawiskiba T, et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. J Cardiovasc Transl Res. 2021;14(3):409–15. https://doi.org/10.1007/s12265-020-10066-9.
Lozano Navarro LV, Chen X, Girata Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, et al. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther. 2022;13(1):345. https://doi.org/10.1186/s13287-022-03043-3.
Article PubMed PubMed Central Google Scholar
Shimatani K, Sato H, Saito A, Sasai M, Watanabe K, Mizukami K, et al. A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates. Am J Physiol Heart Circ Physiol. 2021;320(3):H1124–35. https://doi.org/10.1152/ajpheart.00470.2020.
Article CAS PubMed Google Scholar
Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23. https://doi.org/10.1161/01.RES.0000182903.16652.d7.
Article CAS PubMed Google Scholar
Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenerg. 2010;2:5. https://doi.org/10.3389/fnene.2010.00005.
Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes. 2002;51(10):3107–12. https://doi.org/10.2337/diabetes.51.10.3107.
Article CAS PubMed Google Scholar
Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218–25. https://doi.org/10.2174/09298673113209990022.
Article CAS PubMed Google Scholar
Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 2017;8:16106. https://doi.org/10.1038/ncomms16106.
Article ADS CAS PubMed PubMed Central Google Scholar
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal. 2019;17(1):26. https://doi.org/10.1186/s12964-019-0340-8.
Article PubMed PubMed Central Google Scholar
Eilken HM, Dieguez-Hurtado R, Schmidt I, Nakayama M, Jeong HW, Arf H, et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun. 2017;8(1):1574. https://doi.org/10.1038/s41467-017-01738-3.
Article ADS CAS PubMed PubMed Central Google Scholar
Roobrouck VD, Clavel C, Jacobs SA, Ulloa-Montoya F, Crippa S, Sohni A, et al. Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells. 2011;29(5):871–82. https://doi.org/10.1002/stem.633.
Article CAS PubMed Google Scholar
Quattrocelli M, Palazzolo G, Perini I, Crippa S, Cassano M, Sampaolesi M. Mouse and human mesoangioblasts: isolation and characterization from adult skeletal muscles. Methods Mol Biol. 2012;798:65–76. https://doi.org/10.1007/978-1-61779-343-1_4.
Article CAS PubMed Google Scholar
Berry SE. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med. 2015;4(1):91–8. https://doi.org/10.5966/sctm.2014-0060.
Article CAS PubMed Google Scholar
Scibona E, Morbidelli M. Expansion processes for cell-based therapies. Biotechnol Adv. 2019;37(8):107455. https://doi.org/10.1016/j.biotechadv.2019.107455.
Article CAS PubMed Google Scholar
Stebbins MJ, Gastfriend BD, Canfield SG, Lee MS, Richards D, Faubion MG, et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci Adv. 2019;5(3):eaau7375. https://doi.org/10.1126/sciadv.aau7375.
Article ADS CAS PubMed PubMed Central Google Scholar
Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125(1):87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264.
Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017;19(9):1902–16. https://doi.org/10.1016/j.celrep.2017.05.019.
Article CAS PubMed PubMed Central Google Scholar
Sun J, Huang Y, Gong J, Wang J, Fan Y, Cai J, et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun. 2020;11(1):5196. https://doi.org/10.1038/s41467-020-19042-y.
Article ADS CAS PubMed PubMed Central Google Scholar
Dar A, Itskovitz-Eldor J. Derivation of pericytes from human pluripotent stem cells. Methods Mol Biol. 2021;2235:119–25. https://doi.org/10.1007/978-1-0716-1056-5_8.
Article CAS PubMed Google Scholar
Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7(6):718–29. https://doi.org/10.1016/j.stem.2010.11.011.
Article CAS PubMed PubMed Central Google Scholar
Uenishi G, Theisen D, Lee JH, Kumar A, Raymond M, Vodyanik M, et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports. 2014;3(6):1073–84. https://doi.org/10.1016/j.stemcr.2014.09.014.
Article CAS PubMed PubMed Central Google Scholar
Rotini A, Martinez-Sarra E, Duelen R, Costamagna D, Di Filippo ES, Giacomazzi G, et al. Aging affects the in vivo regenerative potential of human mesoangioblasts. Aging Cell. 2018;17(2):e12714. https://doi.org/10.1111/acel.12714.
Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9. https://doi.org/10.1182/blood-2004-07-2921.
Article CAS PubMed Google Scholar
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. https://doi.org/10.1182/blood-2004-04-1559.
Article CAS PubMed Google Scholar
Chen ST, Gysin R, Kapur S, Baylink DJ, Lau KH. Modifications of the fibroblast growth factor-2 gene led to a marked enhancement in secretion and stability of the recombinant fibroblast growth factor-2 protein. J Cell Biochem. 2007;100(6):1493–508. https://doi.org/10.1002/jcb.21136.
Comments (0)