Transplantation of Human Embryonic Stem Cell–Derived Pericyte-Like Cells Transduced with Basic Fibroblast Growth Factor Promotes Angiogenic Recovery in Mice with Severe Chronic Hindlimb Ischemia

Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63–74. https://doi.org/10.2147/VHRM.S125065.

Article  PubMed  PubMed Central  Google Scholar 

Armstrong EJ, Armstrong DG. Critical limb ischemia. Vasc Med. 2021;26(2):228–31. https://doi.org/10.1177/1358863X20987611.

Article  PubMed  Google Scholar 

Levin SR, Arinze N, Siracuse JJ. Lower extremity critical limb ischemia: a review of clinical features and management. Trends Cardiovasc Med. 2020;30(3):125–30. https://doi.org/10.1016/j.tcm.2019.04.002.

Article  PubMed  Google Scholar 

Teraa M, Conte MS, Moll FL, Verhaar MC. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):e002938. https://doi.org/10.1161/JAHA.115.002938.

Mills JL Sr. Open bypass and endoluminal therapy: complementary techniques for revascularization in diabetic patients with critical limb ischaemia. Diabetes Metab Res Rev. 2008;24(Suppl 1):S34-39. https://doi.org/10.1002/dmrr.829.

Article  PubMed  Google Scholar 

Karimi A, Lauria AL, Aryavand B, Neville RF. Novel therapies for critical limb-threatening ischemia. Curr Cardiol Rep. 2022;24(5):513–7. https://doi.org/10.1007/s11886-022-01669-6.

Article  PubMed  Google Scholar 

Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells. 2018;36(2):161–71. https://doi.org/10.1002/stem.2751.

Article  PubMed  Google Scholar 

Morishita R, Shimamura M, Takeya Y, Nakagami H, Chujo M, Ishihama T, et al. Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan. Curr Gene Ther. 2020;20(1):25–35. https://doi.org/10.2174/1566523220666200516171447.

Article  CAS  PubMed  Google Scholar 

Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy. Curr Diab Rep. 2021;21(3):11. https://doi.org/10.1007/s11892-021-01378-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barc P, Antkiewicz M, Sliwa B, Fraczkowska K, Guzinski M, Dawiskiba T, et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. J Cardiovasc Transl Res. 2021;14(3):409–15. https://doi.org/10.1007/s12265-020-10066-9.

Article  PubMed  Google Scholar 

Lozano Navarro LV, Chen X, Girata Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, et al. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther. 2022;13(1):345. https://doi.org/10.1186/s13287-022-03043-3.

Article  PubMed  PubMed Central  Google Scholar 

Shimatani K, Sato H, Saito A, Sasai M, Watanabe K, Mizukami K, et al. A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates. Am J Physiol Heart Circ Physiol. 2021;320(3):H1124–35. https://doi.org/10.1152/ajpheart.00470.2020.

Article  CAS  PubMed  Google Scholar 

Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23. https://doi.org/10.1161/01.RES.0000182903.16652.d7.

Article  CAS  PubMed  Google Scholar 

Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenerg. 2010;2:5. https://doi.org/10.3389/fnene.2010.00005.

Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes. 2002;51(10):3107–12. https://doi.org/10.2337/diabetes.51.10.3107.

Article  CAS  PubMed  Google Scholar 

Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218–25. https://doi.org/10.2174/09298673113209990022.

Article  CAS  PubMed  Google Scholar 

Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 2017;8:16106. https://doi.org/10.1038/ncomms16106.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal. 2019;17(1):26. https://doi.org/10.1186/s12964-019-0340-8.

Article  PubMed  PubMed Central  Google Scholar 

Eilken HM, Dieguez-Hurtado R, Schmidt I, Nakayama M, Jeong HW, Arf H, et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun. 2017;8(1):1574. https://doi.org/10.1038/s41467-017-01738-3.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Roobrouck VD, Clavel C, Jacobs SA, Ulloa-Montoya F, Crippa S, Sohni A, et al. Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells. 2011;29(5):871–82. https://doi.org/10.1002/stem.633.

Article  CAS  PubMed  Google Scholar 

Quattrocelli M, Palazzolo G, Perini I, Crippa S, Cassano M, Sampaolesi M. Mouse and human mesoangioblasts: isolation and characterization from adult skeletal muscles. Methods Mol Biol. 2012;798:65–76. https://doi.org/10.1007/978-1-61779-343-1_4.

Article  CAS  PubMed  Google Scholar 

Berry SE. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med. 2015;4(1):91–8. https://doi.org/10.5966/sctm.2014-0060.

Article  CAS  PubMed  Google Scholar 

Scibona E, Morbidelli M. Expansion processes for cell-based therapies. Biotechnol Adv. 2019;37(8):107455. https://doi.org/10.1016/j.biotechadv.2019.107455.

Article  CAS  PubMed  Google Scholar 

Stebbins MJ, Gastfriend BD, Canfield SG, Lee MS, Richards D, Faubion MG, et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci Adv. 2019;5(3):eaau7375. https://doi.org/10.1126/sciadv.aau7375.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125(1):87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264.

Article  PubMed  Google Scholar 

Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017;19(9):1902–16. https://doi.org/10.1016/j.celrep.2017.05.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Huang Y, Gong J, Wang J, Fan Y, Cai J, et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun. 2020;11(1):5196. https://doi.org/10.1038/s41467-020-19042-y.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dar A, Itskovitz-Eldor J. Derivation of pericytes from human pluripotent stem cells. Methods Mol Biol. 2021;2235:119–25. https://doi.org/10.1007/978-1-0716-1056-5_8.

Article  CAS  PubMed  Google Scholar 

Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7(6):718–29. https://doi.org/10.1016/j.stem.2010.11.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uenishi G, Theisen D, Lee JH, Kumar A, Raymond M, Vodyanik M, et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports. 2014;3(6):1073–84. https://doi.org/10.1016/j.stemcr.2014.09.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotini A, Martinez-Sarra E, Duelen R, Costamagna D, Di Filippo ES, Giacomazzi G, et al. Aging affects the in vivo regenerative potential of human mesoangioblasts. Aging Cell. 2018;17(2):e12714. https://doi.org/10.1111/acel.12714.

Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9. https://doi.org/10.1182/blood-2004-07-2921.

Article  CAS  PubMed  Google Scholar 

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. https://doi.org/10.1182/blood-2004-04-1559.

Article  CAS  PubMed  Google Scholar 

Chen ST, Gysin R, Kapur S, Baylink DJ, Lau KH. Modifications of the fibroblast growth factor-2 gene led to a marked enhancement in secretion and stability of the recombinant fibroblast growth factor-2 protein. J Cell Biochem. 2007;100(6):1493–508. https://doi.org/10.1002/jcb.21136.

Article  CAS  PubMed 

Comments (0)

No login
gif