Montané E, Santesmases J (2020) Adverse drug reactions. Med Clin (Barc) 154(5):178–184. https://doi.org/10.1016/j.medcli.2019.08.007
Article CAS PubMed Google Scholar
Langmia IM, Just KS, Yamoune S et al (2021) CYP2B6 functional variability in drug metabolism and exposure across populations-implication for drug safety, dosing, and individualized therapy. Front Genet 12:692234. https://doi.org/10.3389/fgene.2021.692234
Article CAS PubMed Google Scholar
Pirmohamed M (2023) Pharmacogenomics: current status and future perspectives. Nat Rev Genet 24(6):350–362. https://doi.org/10.1038/s41576-022-00572-8
Article CAS PubMed Google Scholar
Zhang H, De T, Zhong Y et al (2019) The advantages and challenges of diversity in pharmacogenomics: can minority populations bring us closer to implementation? Clin Pharmacol Ther 106(2):338–349. https://doi.org/10.1002/cpt.1491
Danese E, Raimondi S, Montagnana M et al (2019) Effect of CYP4F2, VKORC1, and CYP2C9 in influencing coumarin dose: a single-patient data meta-analysis in more than 15,000 individuals. Clin Pharmacol Ther 105(6):1477–1491. https://doi.org/10.1002/cpt.1323
Article CAS PubMed Google Scholar
Johnson JA, Caudle KE, Gong L et al (2017) Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther 102(3):397–404. https://doi.org/10.1002/cpt.668
Article CAS PubMed Google Scholar
Sitabule BR, Othman H, Choudhury A et al (2023) Promoting pharmacogenomics in Africa: perspectives from variation in G6PD and other pharmacogenes. Clin Pharmacol Ther 113(3):476–479. https://doi.org/10.1002/cpt.2816
Haas DW, Abdelwahab MT, van Beek SW et al (2022) Pharmacogenetics of between-individual variability in plasma clearance of bedaquiline and clofazimine in South Africa. J Infect Dis 226(1):147–156. https://doi.org/10.1093/infdis/jiac024
Article CAS PubMed PubMed Central Google Scholar
Li D, Peng L, Xing S et al (2021) Genetic analysis of pharmacogenomic VIP variants in the Wa population from Yunnan Province of China. BMC Genom Data. 22(1):51. https://doi.org/10.1186/s12863-021-00999-8
Article CAS PubMed PubMed Central Google Scholar
Cheng Y, Dai R, Chen W et al (2020) Genetic polymorphisms of pharmacogenomic VIP variants in the Dai population from Yunnan province. Mol Genet Genomic Med 8(7):e1231. https://doi.org/10.1002/mgg3.1231
Article CAS PubMed PubMed Central Google Scholar
Zhang C, Guo W, Cheng Y et al (2019) Genetic analysis of pharmacogenomic VIP variants in the Blang population from Yunnan Province of China. Mol Genet Genomic Med 7(5):e574. https://doi.org/10.1002/mgg3.574
Article CAS PubMed PubMed Central Google Scholar
Chen W, Ding H, Cheng Y et al (2019) Genetic polymorphisms analysis of pharmacogenomic VIP variants in Bai ethnic group from China. Mol Genet Genomic Med 7(9):e884. https://doi.org/10.1002/mgg3.884
Article PubMed PubMed Central Google Scholar
Dong W, Wang D, Li Y et al (2020) Genetic polymorphism of HPA1–17 alloantigen system in the Achang and Jingpo populations population in Yunnan. Ann Palliat Med. 9(4):1990–1996. https://doi.org/10.21037/apm-20-1075
Kang H (2021) Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof. 18:17. https://doi.org/10.3352/jeehp.2021.18.17
Article PubMed PubMed Central Google Scholar
Chamboko CR, Veldman W, Tata RB et al (2023) Human Cytochrome P450 1, 2, 3 families as pharmacogenes with emphases on their antimalarial and antituberculosis drugs and prevalent African alleles. Int J Mol Sci. https://doi.org/10.3390/ijms24043383
Zhao J, Lin L, Hadiatullah H et al (2023) Characterization of six diamide insecticides on ryanodine receptor: resistance and species selectivity. J Agric Food Chem 71(29):11001–11007. https://doi.org/10.1021/acs.jafc.3c01750
Article CAS PubMed Google Scholar
Martínez-Iglesias O, Naidoo V, Carrera I et al (2023) Influence of metabolic, transporter, and pathogenic genes on pharmacogenetics and DNA methylation in neurological disorders. Biology (Basel). https://doi.org/10.3390/biology12091156
Principi N, Petropulacos K, Esposito S (2023) Impact of pharmacogenomics in clinical practice. Pharmaceuticals (Basel). https://doi.org/10.3390/ph16111596
Arbitrio M, Scionti F, Di Martino MT et al (2021) Pharmacogenomics biomarker discovery and validation for translation in clinical practice. Clin Transl Sci 14(1):113–119. https://doi.org/10.1111/cts.12869
Kim TH, Chang HS, Park SM et al (2008) Association of angiotensin I-converting enzyme gene polymorphisms with aspirin intolerance in asthmatics. Clin Exp Allergy 38(11):1727–1737. https://doi.org/10.1111/j.1365-2222.2008.03082.x
Article CAS PubMed Google Scholar
Irvin MR, Lynch AI, Kabagambe EK et al (2010) Pharmacogenetic association of hypertension candidate genes with fasting glucose in the GenHAT Study. J Hypertens 28(10):2076–2083. https://doi.org/10.1097/HJH.0b013e32833c7a4d
Article CAS PubMed PubMed Central Google Scholar
Ferreira de Oliveira F, Berretta JM, Suchi Chen E et al (2016) Pharmacogenetic effects of angiotensin-converting enzyme inhibitors over age-related urea and creatinine variations in patients with dementia due to Alzheimer disease. Colomb Med (CA). 47(2):76–80
Article PubMed Central Google Scholar
Vogel LK, Sæbø M, Høyer H et al (2014) Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS ONE 9(8):e105254. https://doi.org/10.1371/journal.pone.0105254
Article PubMed PubMed Central Google Scholar
Yang J, Chen X, Zhou J et al (2018) Associations of candidate gene polymorphisms with poor responsiveness to aspirin: a meta-analysis. Clin Exp Pharmacol Physiol. https://doi.org/10.1111/1440-1681.12973
Article PubMed PubMed Central Google Scholar
Sharma V, Kaul S, Al-Hazzani A et al (2013) Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis 35(1):95–99. https://doi.org/10.1007/s11239-012-0777-8
Article CAS PubMed Google Scholar
Nagao M, Sato Y, Yamauchi A (2013) A meta-analysis of PTGS1 and PTGS2 polymorphisms and NSAID intake on the risk of developing cancer. PLoS ONE 8(8):e71126. https://doi.org/10.1371/journal.pone.0071126
Article CAS PubMed PubMed Central Google Scholar
Tiis RP, Osipova LP, Lichman DV et al (2020) Studying polymorphic variants of the NAT2 gene (NAT2*5 and NAT2*7) in Nenets populations of Northern Siberia. BMC Genet 21(Suppl 1):115. https://doi.org/10.1186/s12863-020-00909-4
Article CAS PubMed PubMed Central Google Scholar
Sim E, Walters K, Boukouvala S (2008) Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev 40(3):479–510. https://doi.org/10.1080/03602530802186603
Article CAS PubMed Google Scholar
Ruiz JD, Martínez C, Anderson K et al (2012) The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS ONE 7(9):e44629. https://doi.org/10.1371/journal.pone.0044629
Article CAS PubMed PubMed Central Google Scholar
Adole PS, Kharbanda PS, Sharma S (2016) N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures—a pilot study. Indian J Med Res 143(5):581–590. https://doi.org/10.4103/0971-5916.187106
Article CAS PubMed PubMed Central Google Scholar
Gupta VH, Amarapurkar DN, Singh M et al (2013) Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J Gastroenterol Hepatol 28(8):1368–1374. https://doi.org/10.1111/jgh.12194
Article CAS PubMed Google Scholar
Xiang Y, Ma L, Wu W et al (2014) The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1. PLoS ONE 9(1):e85905. https://doi.org/10.1371/journal.pone.0085905
Article CAS PubMed Google Scholar
Lawi ZK, Al-Shuhaib MBS, Amara IB (2023) The rs1801280 SNP is associated with non-small cell lung carcinoma by exhibiting a highly deleterious effect on N-acetyltransferase 2. J Cancer Res Clin Oncol 149(1):147–157. https://doi.org/10.1007/s00432-022-04332-3
Comments (0)