Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, pseudomonas and acinetobacter. Trends Microbiol. 2006;14(9):413–20. https://doi.org/10.1016/j.tim.2006.07.008
Article CAS PubMed Google Scholar
Fisher JF, Meroueh SO, Mobashery SJC. Bacterial resistance to β-Lactam antibiotics: compelling opportunism, compelling opportunity. Cheminform. 2005;36(24):395–424. https://doi.org/10.1021/cr030102i
Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76. https://doi.org/10.1128/AAC.01009-09
Article CAS PubMed Google Scholar
Alm RA, Johnstone MR, Lahiri SD. Characterization of escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;5:1420–8.https://doi.org/10.1093/jac/dku568
Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–31. https://doi.org/10.1098/rstb.1980.0049
Article CAS PubMed Google Scholar
Crowder MW, Spencer J, Vila AJ. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39(10):721–8. https://doi.org/10.1021/ar0400241
Article CAS PubMed Google Scholar
Thomas CP, Moore LSP, Elamin N, Doumith M, Zhang J, Maharjan S, et al. Early (2008–2010) hospital outbreak of Klebsiella pneumoniae producing OXA-48 carbapenemase in the UK. Int J Antimicrob Agents. 2013;42(6):531–6. https://doi.org/10.1016/j.ijantimicag
Article CAS PubMed Google Scholar
Dautzenberg M, Ossewaarde J, Kraker MD, Zee AVD, Bonten MJ. Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Eur Surveill. 2014;19(9):30–41. https://doi.org/10.2807/1560-7917.es2014.19.9.20723
Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, et al. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother. 2012;56(4):2125–8. https://doi.org/10.1128/AAC.05315-11
Article CAS PubMed PubMed Central Google Scholar
Potron AS, Schrenzel J, Poirel L, Renzi G, Cherkaoui A. Nordmann PJIJAA. Emergence of OXA-48-producing Enterobacteriaceae in Switzerland. Int J Antimicrob Agents. 2012;40(6):563–4. https://doi.org/10.1016/j.ijantimicag
Article CAS PubMed Google Scholar
Hammoudi D, Moubareck CA, Aires J, Adaime A, Barakat A, Fayad N, et al. Countrywide spread of OXA-48 carbapenemase in Lebanon: surveillance and genetic characterization of carbapenem-non-susceptible Enterobacteriaceae in 10 hospitals over a one-year period. Int J Infect Dis. 2014;29:139–44. https://doi.org/10.1016/j.ijid.2014.07.017
Article CAS PubMed Google Scholar
Aqel AA, Findlay J, Al-Maayteh M, Al-Kaabneh A, Hopkins KL, Alzoubi H, et al. Characterization of carbapenemase-producing Enterobacteriaceae from Patients in Amman, Jordan. Micro Drug Resist. 2018;24(8):1121–7. https://doi.org/10.1089/mdr.2017.0238
Messaoudi A, Haenni M, Bouallègue Olfa, Saras E, Chatre P, Chaouch C, et al. Dynamics and molecular features of OXA-48-like-producing Klebsiella pneumoniae lineages in a Tunisian hospital. J Glob Antimicrob Resist. 2020;20:87–93. https://doi.org/10.1016/j.jgar.2019.07.005
Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–606. https://doi.org/10.1093/jac/dks121
Article CAS PubMed Google Scholar
Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46(3):266–71. https://doi.org/10.1016/j.ijantimicag.2015.05.003
Article CAS PubMed Google Scholar
Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant klebsiella pneumoniae Infections. Antimicrob Agents Chemother. 2017;61(3):AAC.02097-16. https://doi.org/10.1128/AAC.02097-16
Vallejo JA, Martínez-Guitián M, Vázquez-Ucha JC, González-Bello C, Poza M, Buynak JD, et al. LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48. J Antimicrob Chemother. 2016;71:2171–80. https://doi.org/10.1093/jac/dkw105
Article PubMed PubMed Central Google Scholar
Garofalo B, Prati F, Buonfiglio R, Coletta I, Ombrato R. Discovery of novel chemical series of OXA-48 β-lactamase inhibitors by high-throughput screening. Pharmaceuticals. 2021;14(7):612 https://doi.org/10.3390/ph14070612
Article CAS PubMed PubMed Central Google Scholar
Mahabusarakam W, Kuaha K, Wilairat P, Taylor WC. Prenylated xanthones as potential antiplasmodial substances. Planta Med. 2006;72(10):912–6. https://doi.org/10.1055/s-2006-947190
Article CAS PubMed Google Scholar
Teng Z, Guo Y, Liu X, Zhang J, Niu X, Yu Q, et al. Theaflavin‐3,3‐digallate increases the antibacterial activity of β‐lactam antibiotics by inhibiting metallo‐β‐lactamase activity. J Cell Mol Med. 2019;10:6955–64. https://doi.org/10.1111/jcmm.14580
Wang Y, Sun X, Kong F, Xia L, Wang J. Specific NDM-1 inhibitor of isoliquiritin enhances the activity of meropenem against NDM-1-positive Enterobacteriaceae in vitro. Int J Environ Res Public Health. 2020;17(6):2162. https://doi.org/10.3390/ijerph17062162
Article CAS PubMed PubMed Central Google Scholar
Liu S, Zhou Y, Niu X, Wang T, Li J, Liu Z et al. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discovery. 2018;4(1). https://doi.org/10.1038/s41420-018-0029-6
Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, et al. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 2013;24(11):1849–58. https://doi.org/10.1016/j.jnutbio.2013.04.006
Article CAS PubMed Google Scholar
Martínez A, Galano A, Vargas RJ. Free radical scavenger properties of α-mangostin: thermodynamics and kinetics of HAT and RAF mechanisms. J Phys Chem B. 2011;115(43):12591–8. https://doi.org/10.1021/jp205496u
Article CAS PubMed Google Scholar
Liu SH, Lee LT, Hu NY, Huange KK, Chen TS. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells. Chin Med. 2012;7(1):19. https://doi.org/10.1186/1749-8546-7-19
Article CAS PubMed PubMed Central Google Scholar
Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV, et al. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol. 2017;101(8):3349–59. https://doi.org/10.1007/s00253-017-8231-7
Article CAS PubMed Google Scholar
Zhao LX, Wang Y, Liu T, Wang YX, Chen HZ, Xu JR, et al. α-Mangostin decreases β-amyloid peptides production via modulation of amyloidogenic pathway. CNS Neurosci Ther. 2017;23(6):526–34. https://doi.org/10.1111/cns.12699
Article CAS PubMed PubMed Central Google Scholar
Choi YH, Bae JK, Chae HS, Kim YM, Chin YW. α-Mangostin regulates hepatic steatosis and obesity through SirT1-AMPK and PPARγ pathways in high-fat diet-induced obese mice. J Agric Food Chem. 2015;63(38):8399–406. https://doi.org/10.1021/acs.jafc.5b01637
Article CAS PubMed Google Scholar
Kritsanawong S, Innajak S, Imoto M, Watanapokasin RJ. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int J Oncol. 2016;48(5):2155–65. https://doi.org/10.3892/ijo.2016.3399
Article CAS PubMed Google Scholar
Kittipaspallop W, Taepavarapruk P, Chanchao C, Pimtong W. Acute toxicity and teratogenicity of α-mangostin in zebrafish embryos. Biol Med. 2018;15-16:1212–19. https://doi.org/10.1177/1535370218819743
Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, et al. Discovery of quercetin and its analogs as potent OXA-48 beta-lactamase inhibitors. Front Pharm. 2022;13:926104 https://doi.org/10.3389/fphar.2022.926104
Zhang YL, Yang KW, Zhou YJ, LaCuran AE, Oelschlaeger P, Crowder MW. Diaryl-substituted azolylthioacetamides: inhibitor discovery of New Delhi metallo-beta-lactamase-1 (NDM-1). ChemMedChem. 2014;9:2445–8. https://doi.org/10.1002/cmdc.201402249
Article CAS PubMed Google Scholar
Christopeit T, Yang KW, Yang SK, Leiros HK. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallogr F Struct Biol Commun. 2016;72(11):813–9. https://doi.org/10.1107/S2053230X16016113
Article CAS PubMed PubMed Central Google Scholar
Chigan JZ, Hu Z, Liu L, Xu YS, Ding HH, Yang KW. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem. 2022;120. https://doi.org/10.1016/j.bioorg.2022.105654
Copeland RA, Basavapathruni A, Moyer M, Scott MP. Impact of enzyme concentration and residence time on apparent activity recovery in jump dilution analysis. Anal Biochem. 2011;416(2):206–10.
Comments (0)