Cardioprotective Effect of 2-Ethyl-3-Hydroxy-6-Methylpyridinium 2-Nitroxysuccinate Against Adrenaline/Hydrocortisone-Induced Myocardial Ischemia in Mice: Modulation of Free-Radical Processes in Biomembranes and Monoamine Oxidase A Activity

Khan, M. A., Hashim, M. J., Mustafa, H., Baniyas, M. Y., Al Suwaidi, S. K. B. M., AlKatheeri, R., Alblooshi, F. M. K., Almatrooshi, M. E. A. H., Alzaabi, M. E. H., Al Darmaki, R. S., & Lootah, S. N. A. H. (2020). Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus, 12(7), e9349. https://doi.org/10.7759/cureus.9349.

Article  PubMed  PubMed Central  Google Scholar 

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., Coresh, J., Criqui, M., DeCleene, N., Eagle, K. A., Emmons-Bell, S., Feigin, V. L., Fernández-Solà, J., Fowkes, G., Gakidou, E., Grundy, S. M., He, F. J., Howard, G., Hu, F., Inker, L., Karthikeyan, G., Kassebaum, N., Koroshetz, W., Lavie, C., Lloyd-Jones, D., Lu, H. S., Mirijello, A., Temesgen, A. M., Mokdad, A., Moran, A. E., Muntner, P., Narula, J., Neal, B., Ntsekhe, M., Moraes de Oliveira, G., Otto, C., Owolabi, M., Pratt, M., Rajagopalan, S., Reitsma, M., Ribeiro, A. L. P., Rigotti, N., Rodgers, A., Sable, C., Shakil, S., Sliwa-Hahnle, K., Stark, B., Sundström, J., Timpel, P., Tleyjeh, I. M., Valgimigli, M., Vos, T., Whelton, P. K., Yacoub, M., Zuhlke, L., Murray, C., & Fuster, V. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College Cardiology, 76, 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

Article  Google Scholar 

Moreira-Silva, S., Urbano, J., Nogueira-Silva, L., Bettencourt, P., & Pimenta, J. (2016). Impact of chronic nitrate therapy in patients with ischemic heart failure. Journal of Cardiovascular Pharmacology Therapeutics, 21(5), 466–470. https://doi.org/10.1177/1074248416634464.

Article  CAS  PubMed  Google Scholar 

Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467, 1–12. https://doi.org/10.1007/s11010-019-03667-9.

Article  CAS  PubMed  Google Scholar 

Shaito, A., Aramouni, K., Assaf, R., Parenti, A., Orekhov, A., Yazbi, A. E., Pintus, G., & Eid, A. H. (2022). Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Frontiers in Bioscience (Landmark Ed), 27(3), 105. https://doi.org/10.31083/j.fbl2703105.

Article  CAS  Google Scholar 

Rodella, L. F., & Rezzani, R. (2012). Endothelial and vascular smooth cell dysfunctions: A comprehensive appraisal [Internet]. Atherogenesis. InTech. Available from: https://doi.org/10.5772/25479.

Liu, Y., Feng, S., Subedi, K., & Wang, H. (2020). Attenuation of Ischemic Stroke-Caused Brain Injury by a Monoamine Oxidase Inhibitor Involves Improved Proteostasis and Reduced Neuroinflammation. Molecular Neurobiology, 57(2), 937–948. https://doi.org/10.1007/s12035-019-01788-2.

Article  CAS  PubMed  Google Scholar 

Costiniti, V., Spera, I., Menabò, R., Palmieri, E. M., Menga, A., Scarcia, P., Porcelli, V., Gissi, R., Castegna, A., & Canton, M. (2018). Monoamine oxidase-dependent histamine catabolism accounts for post-ischemic cardiac redox imbalance and injury. Biochimica et Biophysica Acta Molecular Basis of Disease, 1864(9 Pt B), 3050–3059. https://doi.org/10.1016/j.bbadis.2018.06.018.

Article  CAS  PubMed  Google Scholar 

Santin, Y., Fazal, L., Sainte-Marie, Y., Sicard, P., Maggiorani, D., Tortosa, F., Yücel, Y. Y., Teyssedre, L., Rouquette, J., Marcellin, M., Vindis, C., Shih, J. C., Lairez, O., Burlet-Schiltz, O., Parini, A., Lezoualc’h, F., & Mialet-Perez, J. (2020). Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling. Cell Death & Differentiation, 27(6), 1907–1923. https://doi.org/10.1038/s41418-019-0470-y.

Article  CAS  Google Scholar 

Manzella, N., Santin, Y., Maggiorani, D., Martini, H., Douin-Echinard, V., Passos, J. F., Lezoualc’h, F., Binda, C., Parini, A., & Mialet-Perez, J. (2018). Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell, 17(5), e12811. https://doi.org/10.1111/acel.12811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merce, A. P., Ionică, L. N., Bînă, A. M., Popescu, S., Lighezan, R., Petrescu, L., Borza, C., Sturza, A., Muntean, D. M., & Creţu, O. M. (2023). Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Molecular and Cellular Biochemistry, 478(1), 59–67. https://doi.org/10.1007/s11010-022-04490-5.

Article  CAS  PubMed  Google Scholar 

Neganova, M. E., Klochkov, S. G., Shevtsova, E. F., Bogatyrenko, T. N., & Mishchenko, D. V. (2018). Antioxidant properties of a pharmaceutical substance hypocard, a potential drug for ischemic disease. Bulletin of Experimental Biology Medicine, 166(1), 46–49. https://doi.org/10.1007/s10517-018-4286-4.

Article  CAS  PubMed  Google Scholar 

Bogatyrenko, T. N., Kuropteva, Z. V., Baider, L. M., Bogatyrenko, V. R., & Mishchenko, D. V. (2020). 2-Ethyl-3-hydroxy-6-methylpyridine nitroxy succinate as a multifunctional hybrid structure. Russian Chemical Bulletin, 69(10), 1999–2003. https://doi.org/10.1007/s11172-020-2991-4.

Article  CAS  Google Scholar 

Gaman, D. V., Kononenko, N. N., Gubina-Vakulik, G. I., Tyupka, T. I., & Volkovoy, V. A. (2011). Features of the morphogenic ultrastructure of the myocardium in experimental myocardial ischemia. Ukrainian Biopharmaceutical Journal, 5, 16–20

Google Scholar 

Areshidze, D. A., Mischenko, D. V., Makartseva, L. A., Kucher, S. A., Kozlova, M. A., Timchenko, L. D., Rzhepakovsky, I. V., Nagdalian, A. A., & Pushkin, S. V. (2018). Some functional measures of the organism of rats at modeling of ischemic heart disease in two different ways. Entomology Applied Science Letters, 5(4), 19–29

Google Scholar 

Fedorov, B. S., Fadeev, M. A., Varfolomeev, V. N., Retskij, M. I., Bliznetsova, G. N., & Neborak, E. V. (2010). Nitroxy-succinate 2-ethyl-6-methyl-3-oxypyridine (versions of use) and method of producing said compound: RU, 2394815[P]. Bull. No. 20

Gadomskij, S. Y., Yakushchenko, I. K., Pozdeeva, N. N., Golosov, E. V., & Mishchenko, D.V. (2019). Method of producing 2-nitroxysuccinate 3-oxy-6-methyl-2-ethylpyridine: RU, 2699070 C1[P]. Bull. No. 25

Balakina, A. A., Prikhodchenko, T. R., Yakushev, I. A., Amozova, V. I., Mumyatova, V. A., Kornev, A. B., Terent’ev, A. A., Gadomsky, S. Y. A., Dorovatovskii, P. V., Fedorov, B. S., & Mishchenko, D. V. (2023). Structure and biological activity of 2-ethyl-3-hydroxy-6-methylpyridinium nitroxysuccinate. Russian Chemical Bulletin, 72, 1618–1631. https://doi.org/10.1007/s11172-023-3942-7.

Article  CAS  Google Scholar 

Vystorop, I. V., Konovalova, N. P., Nelyubina, Y. V., Varfolomeev, V. N., Fedorov, B. S., Sashenkova, T. E., Berseneva, E. N., Lyssenko, K. A., & Kostyanovsky, R. G. (2010). Cyclic hydroxamic acids derived from α-amino acids 1. Regioselective synthesis, structure, NO-donor and antimetastatic activities of spirobicyclic hydroxamic acids derived from glycine and DL-alanine. Russian Chemical Bulletin, 59, 127–135. https://doi.org/10.1007/s11172-010-0055-x.

Article  CAS  Google Scholar 

Rein, H., Ristau, O., & Scheler, W. (1972). On the influence of allosteric effectors on the electron paramagnetic spectrum of nitric oxide hemoglobin. FEBS Letters, 24(1), 24–26. https://doi.org/10.1016/0014-5793(72)80817-2.

Article  CAS  PubMed  Google Scholar 

Mironov, A. N., Bunyatyan, N. D., Vasiliev, A. N., Verstakova, O. L., Zhuravleva, M. V., Lepakhin, V. K., Korobov, N. V., Merkulov, V. A., Orehov, S. N., Sakayeva, I. V., Uteshev, D. B., & Yavorsky, A. N. (2012). Guidelines for Preclinical Trials of Medicinal Products. Part 1. Grif & K, Moscow (In Russian): 15–17.

Lie, J. T., Holley, K. E., Kampa, W. R., & Titus, J. L. (1971). New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clinic Proceedings, 46(5), 319–327.

CAS  PubMed  Google Scholar 

Broeke, J., Pérez, J. M. M., & Pascau, J. (2015) Image Processing with ImageJ; (p. 346)Packt Publishing: Birmingham, UK

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3.

Article  CAS  PubMed  Google Scholar 

Faingold, I. I., Poletaeva, D. A., Soldatova, Y. V., Smolina, A. V., Pokidova, O. V., Kulikov, A. V., Sanina, N. A., & Kotelnikova, R. A. (2021). Effects of albumin-bound nitrosyl iron complex with thiosulfate ligands on lipid peroxidation and activities of mitochondrial enzymes in vitro. Nitric Oxide, 117, 46–52. https://doi.org/10.1016/j.niox.2021.10.002.

Article  CAS  PubMed  Google Scholar 

Vladimirov, Y. A., & Proskurnina, E. V. (2009). Free radicals and cell chemiluminescence.Biochemistry, 74(13), 1545–1566. https://doi.org/10.1134/s0006297909130082.

Article  CAS  PubMed  Google Scholar 

Kotelnikova, R. A., Smolina, A. V., Grigoryev, V. V., Faingold, I. I., Mischenko, D. V., Rybkin, A. Y. U., Poletayeva, D. A., Vankin, G. I., Zamoyskiy, V. L., Voronov, I. I., Troshin, P. A., Kotelnikov, A. I., & Bachurin, S. O. (2014). Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. Medchemcomm, 5, 1664–1668. https://doi.org/10.1039/C4MD00194J.

Article  CAS  Google Scholar 

Veryovkina, I. V., Samed, M. M., & Gorkin, V. Z. (1972). Mitochondrial monoamine oxidase of rat liver: reversible qualitative alterations in catalytic properties. Biochimica Biophysica Acta, 258(1), 56–70. https://doi.org/10.1016/0005-2744(72)90966-7.

Article  CAS  Google Scholar 

Varadharaj, S., Kelly, O. J., Khayat, R. N., Kumar, P. S., Ahmed, N., & Zweier, J. L. (2017). Role of dietary antioxidants in the preservation of vascular function and the modulation of health and disease. Frontiers in Cardiovascular Medicine, 4, 64. https://doi.org/10.3389/fcvm.2017.00064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y., Huang, A., Kaley, G., & Sun, D. (2009). ENOS uncoupling and endothelial dysfunction in aged vessels. American Journal of Physiology-Heart and Circulatory Physiology, 297(5), H1829–H1836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prikhodchenko, T. R., Balakina, A. A., Amozova, V. I., Gadomsky, S. Y. A., & Mishchenko, D. V. (2022). Antioxidant properties of 3-hydroxy-2-ethyl-6-methylpyridinium nitroxysuccinate upon the activation of oxidative processes by antitumor drug cisplatin in vitro and in vivo. Russian Chemical Bulletin, 71, 2629–2635.

Article  CAS  Google Scholar 

Pokidova, O. V., Batova, E. V., Sadkov, A. P., Eremeev, A. B., Fedorov, B. S., & Kotelnikov, A. I. (2019). The reactivity of 3-hydroxy-6-methyl-2-ethylpyridine 2-nitroxysuccinate and reference drugs in model no-generating systems. Doklady Chemistry, 486, 152–155. https://doi.org/10.1134/S0012500819060016.

Article  CAS  Google Scholar 

Pokidova, O. V., Psikha, B. L., Kormukhina, A. Y. U., Kotel’nikov, A. I., & Fedorov, B. S. (2020). Mechanism of the 2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate reduction in nitrite-generating systems. Mendeleev Communications, 30(4), 482–484. https://doi.org/10.1016/j.mencom.2020.07.025.

Article  CAS  Google Scholar 

Poletaeva, D. A., Faingold, I. I., Soldatova, Y. V., Smolina, A. V., Fedorov, B. S., Eremeev, A. B., & Kotelnikova, R. A. (2019). Membranotropic and antiradical properties of 2-nitroxysuccinate 3-hydroxy-6-methyl-2-ethylpyridine. Bulletin of Experimental Biology and Medicine, 167(6), 744–746. https://doi.org/10.1007/s10517-019-04613-x.

Article  CAS  PubMed  Google Scholar 

Huuskonen, C., Hämäläinen, M., Paavonen, T., Moilanen, E., & Mennander, A. (2019). Monoamine oxidase A inhibition protects the myocardium after experimental acute volume overload. The Anatolian Journal Cardiology, 21(1), 39–45. https://doi.org/10.14744/AnatolJCardiol.2018.37336.

Article  CAS  Google Sch

Comments (0)

No login
gif