Abu Bakar Sajak A, Mediani A, Maulidiani Mohd Dom NS, Machap C, Hamid M, Ismail A, Khatib A, Abas F (2017) Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via 1H NMR-based metabolomics approach. Phytomedicine 36:201–209. https://doi.org/10.1016/j.phymed.2017.10.011
Article CAS PubMed Google Scholar
Barlow GM, Yu A, Mathur R (2015) Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract 30:787–797. https://doi.org/10.1177/0884533615609896
Article CAS PubMed Google Scholar
Chen M, Xiao D, Liu W, Song Y, Zou B, Li L, Li P, Cai Y, Liu D, Liao Q, Xie Z (2020) Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int J Biol Macromol 155:890–902. https://doi.org/10.1016/j.ijbiomac.2019.11.047
Article CAS PubMed Google Scholar
Chen X, Lu Y, Shan M, Zhao H, Lu Z, Lu Y (2022a) A mini-review: mechanism of antimicrobial action and application of surfactin. World J of Microb Biot 38:143. https://doi.org/10.1007/s11274-022-03323-3
Chen X, Zhao H, Lu Y, Liu H, Meng F, Lu Z, Lu Y (2022b) Surfactin mitigates a high-fat diet and streptozotocin-induced type 2 diabetes through improving pancreatic dysfunction and inhibiting inflammatory response. Int J Mol Sci 23:11086. https://doi.org/10.3390/ijms231911086
Article CAS PubMed PubMed Central Google Scholar
Chen X, Zhao H, Meng F, Zhou L, Pang X, Lu Z, Lu Y (2022c) Ameliorated effects of a lipopeptide surfactin on insulin resistance in vitro and in vivo. Food Sci Nutr 10:2455–2469. https://doi.org/10.1002/fsn3.2852
Article CAS PubMed PubMed Central Google Scholar
Chen X, Zhao H, Meng F, Zhou L, Lu Z, Lu Y (2023a) Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Food Sci Humam Wellness 12:2095–2110. https://doi.org/10.1016/j.fshw.2023.03.012
Chen X, Zhao H, Lu Y, Meng F, Lu Z, Lu Y (2023b) Surfactin mitigates dextran sodium sulfate-induced colitis and behavioral disorders in mice by mediating gut–brain-axis balance. J Agr Food Chem 71:1577–1592. https://doi.org/10.1021/acs.jafc.2c07369
El-Baz AM, Khodir AE, Adel El-Sokkary MM, Shata A (2020) The protective effect of Lactobacillus versus 5-aminosalicylic acid in ulcerative colitis model by modulation of gut microbiota and Nrf2/Ho-1 pathway. Life Sci 256:117927. https://doi.org/10.1016/j.lfs.2020.117927
Article CAS PubMed Google Scholar
Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71. https://doi.org/10.1038/s41579-020-0433-9
Article CAS PubMed Google Scholar
Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Louise Thomas E, Bell JD (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611. https://doi.org/10.1038/ncomms4611
Article CAS PubMed Google Scholar
Gao K, Ren XL, Chen CL, Fan QL, LiYJ WHF, Chen S (2023) Oral administration of Bifidobacterium longum WHH2270 ameliorates type 2 diabetes in rats. J Food Sci. https://doi.org/10.1111/1750-3841.16727
Hayakawa J, Wang M, Wang C, Han RH, Jiang ZY, Han X (2018) Lipidomic analysis reveals significant lipogenesis and accumulation of lipotoxic components in ob/ob mouse organs. Prostag Leukotr and Ess 136:161–169. https://doi.org/10.1016/j.plefa.2017.01.002
Ji Y, Yao Y, Duan Y, Zhao H, Hong Y, Cai Z, Sun H (2021) Association between urinary organophosphate flame retardant diesters and steroid hormones: a metabolomic study on type 2 diabetes mellitus cases and controls. Sci Total Environ 756:143836. https://doi.org/10.1016/j.scitotenv.2020.143836
Article CAS PubMed Google Scholar
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
Article CAS PubMed Google Scholar
Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, Skye SM, Roberts AB, Wu Y, Li L, Shahen CJ, Wagner MA, Hartiala JA, Kerby RL, Romano KA, Han Y, Obeid S, Luscher TF, Allayee H, Rey FE, DiDonato JA, Fiehn O, Tang WHW, Hazen SL (2018) Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. J Clin Invest 3:6. https://doi.org/10.1172/jci.insight.99096
Liang S, Liang LM, Gao XF, Zhang HP, Yao P, Hu Y, Ma YW, Wang FJ, Jin QL, Li HX, Li RX, Liu Y, Hu FB, Zeng R, Lin X, Wu J (2016) Early prediction of developing type 2 diabetes by plasma acylcarnitines:a population-based study. Diabetes Care 39:1563–1570. https://doi.org/10.2337/dc16-0232
Liang L, Liu G, Yu G, Zhang F, Linhardt RJ, Li Q (2020) Urinary metabolomics analysis reveals the anti-diabetic effect of stachyose in high-fat diet/streptozotocin-induced type 2 diabetic rats. Carbohy Polym 229:115534. https://doi.org/10.1016/j.carbpol.2019.115534
Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7:e35240. https://doi.org/10.1371/journal.pone.0035240
Lin HT, Cheng ML, Lo CJ, Lin G, Lin SF, Yeh JT, Ho HY, Lin JR, Liu FC (2019) 1H Nuclear magnetic resonance (NMR)-based cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy. J Clinl Med 8. https://doi.org/10.3390/jcm8060874
Liu XF, Luo DH, Guan JJ, Chen J, Xu XF (2022) Mushroom polysaccharides with potential in anti-diabetes: biological mechanisms, extraction, and future perspectives: a review. Front Nutr 9:1087826. https://doi.org/10.3389/fnut.2022.1087826
Article CAS PubMed PubMed Central Google Scholar
Lv XY, Li J, Zhang M, Wang CM, Fan Z, Wang CY, Chen L (2010) Enhancement of sodium caprate on intestine absorption and antidiabetic action of berberine. AAPS PharmSciTech 11:372–382. https://doi.org/10.1208/s12249-010-9386-z
Article CAS PubMed PubMed Central Google Scholar
Mathew AV, Jaiswal M, Ang L, Michailidis G, Pennathur S, Pop-Busui R (2019) Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in type 1 diabetes. Diabetes 68:2035–2044. https://doi.org/10.2337/db19-0145
Article CAS PubMed PubMed Central Google Scholar
Metwaly A, Reitmeier S, Haller D (2022) Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat Rev Gastroenterol Hepatol 19:383–397. https://doi.org/10.1038/s41575-022-00581-2
Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, Guasch-Ferré M (2022) Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care 45:1013–1024. https://doi.org/10.2337/dc21-1705
Article CAS PubMed PubMed Central Google Scholar
Ndlovu IS, Tshilwane SI, Vosloo A, Chaisi M, Mukaratirwa S (2023) Metabolomics of type 2 diabetes mellitus in sprague dawley rats-in search of potential metabolic biomarkers. Int J Mol Sci 24:12467. https://doi.org/10.3390/ijms241512467
Article CAS PubMed PubMed Central Google Scholar
Neis EP, van Eijk HM, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CH, Rensen SS (2019) Distal versus proximal intestinal short-chain fatty acid release in man. Gut 68:764–765. https://doi.org/10.1136/gutjnl-2018-316161
Article CAS PubMed Google Scholar
Neth K, Lucio M, Walker A, Zorn J, Schmitt-Kopplin P, Michalke B (2015) Changes in brain metallome/metabolome pattern due to a single i.v. injection of manganese in rats. PLoS One 10:e0138270. https://doi.org/10.1371/journal.pone.0138270
Article CAS PubMed PubMed Central Google Scholar
Niu WL, Miao JJ, Li XJ, Guo Q, Zhang N, Deng ZJ, Wu LR (2023) Combined systematic pharmacology and urine metabonomics to study the therapeutic mechanism of type 2 diabetic treated with the herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var lobata (Willd.) Sanjappa & Pradeep. J Chromatogr B 1217:123627. https://doi.org/10.1016/j.jchromb.2023.123627
Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335. https://doi.org/10.1038/ismej.2014.14
Article CAS PubMed PubMed Central Google Scholar
Shi Z, Lei H, Chen G, Yuan P, Cao Z, Ser HL, Zhu X, Wu F, Liu C, Dong M, Song Y, Guo Y, Chen C, Hu K, Zhu Y, Xa Z, Zhou J, Lu Y, Patterson AD, Zhang L (2021) Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice. Msystems 6:e00985-e920. https://doi.org/10.1128/mSystems.00985-20
Article CAS PubMed PubMed Central Google Scholar
Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, De Michieli F, Paschetta E, Musso G (2018) Altered gut microbiota in type 2 diabetes: just a coincidence? Curr Diabetes Rep 18:98. https://doi.org/10.1007/s11892-018-1057-6
Sun CB, Li A, Wang H, Ma JG, Hou JC (2023) Positive regulation of acetate in adipocyte differentiation and lipid deposition in obese mice. Nutrients 15:3736. https://doi.org/10.3390/nu15173736
Comments (0)