Villamizar, O., et al. (2019). Targeted activation of cystic fibrosis transmembrane conductance regulator. Molecular Therapy, 27(10), 1737–1748.
Article PubMed PubMed Central CAS Google Scholar
[cited 2023 22-08-2023]; Available from: https://www.yourgenome.org/facts/what-is-cystic-fibrosis/.
Cutting, G. R. (2015). Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Reviews Genetics, 16(1), 45–56.
Article PubMed CAS Google Scholar
Guggino, W. B., & Stanton, B. A. (2006). New insights into cystic fibrosis: molecular switches that regulate CFTR. Nature Reviews Molecular Cell Biology, 7(6), 426–436.
Article PubMed CAS Google Scholar
Lopes-Pacheco, M. (2019). CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Frontiers in Pharmacology, 10, 1662.
Article PubMed CAS Google Scholar
De Boeck, K., & Amaral, M. D. (2016). Progress in therapies for cystic fibrosis. The Lancet Respiratory Medicine, 4(8), 662–674.
Mall, M. A., & Hartl, D. (2014). CFTR: cystic fibrosis and beyond. European Respiratory Society.
Winikates, K. (2012). Cystic fibrosis transmembrane conductance regulator (CFTR) gene. In Embryo Project Encyclopedia. Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.
Verkman, A. S., et al. (2013). CFTR inhibitors. Current Pharmaceutical Design, 19(19), 3529–3541.
Article PubMed PubMed Central CAS Google Scholar
[cited 2023 06-10-2023]; Available from: https://www.mayoclinic.org/diseases-conditions/cystic-fibrosis/symptoms-causes/syc-20353700.
Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2002). Lung infections associated with cystic fibrosis. Clinical Microbiology Reviews, 15(2), 194–222.
Article PubMed PubMed Central CAS Google Scholar
Quinton, P. M. (1999). Physiological basis of cystic fibrosis: a historical perspective. Physiological Reviews, 79(1), S3–S22.
Article PubMed CAS Google Scholar
Barbry, P., Marcet, B. & Caballero, I. (2021). Where is the cystic fibrosis transmembrane conductance regulator? American Thoracic Society, 10, 1214–1216.
Hull, J. (2012). Cystic fibrosis transmembrane conductance regulator dysfunction and its treatment. Journal of the Royal Society of Medicine, 105(2), 2–8.
Antigny, F., et al. (2011). CFTR and Ca2+ signaling in cystic fibrosis. Frontiers in Pharmacology, 2, 67.
Article PubMed PubMed Central CAS Google Scholar
Gadsby, D. C., Vergani, P., & Csanády, L. (2006). The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature, 440(7083), 477–483.
Article PubMed PubMed Central CAS Google Scholar
Liu, F., et al. (2017). Molecular structure of the human CFTR ion channel. Cell, 169(1), 85–95.e8.
Article PubMed CAS Google Scholar
Zhang, Z., Liu, F., & Chen, J. (2018). Molecular structure of the ATP-bound, phosphorylated human CFTR. Proceedings of the National Academy of Sciences, 115(50), 12757–12762.
Kim, S. J., & Skach, W. R. (2012). Mechanisms of CFTR folding at the endoplasmic reticulum. Frontiers in Pharmacology, 3, 201.
Article PubMed PubMed Central CAS Google Scholar
Quinton, P. M. (2001). The neglected ion: HCO3−. Nature Medicine, 7(3), 292–293.
Article PubMed CAS Google Scholar
Boucher, R. C. (2007). Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends in Molecular Medicine, 13(6), 231–240.
Article PubMed CAS Google Scholar
Della Sala, A., et al. (2021). Role of protein kinase A-mediated phosphorylation in CFTR channel activity regulation. Frontiers in Physiology, 12, 690247.
Article PubMed PubMed Central Google Scholar
Chen, J.-H. (2020). Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Journal of Biological Chemistry, 295(14), 4577–4590.
Article PubMed PubMed Central CAS Google Scholar
Li, H., et al. (2018). Therapeutic approaches to CFTR dysfunction: from discovery to drug development. Journal of Cystic Fibrosis, 17(2), S14–S21.
Article PubMed CAS Google Scholar
Hwang, T.-C., et al. (2018). Structural mechanisms of CFTR function and dysfunction. Journal of General Physiology, 150(4), 539–570.
Article PubMed PubMed Central CAS Google Scholar
[cited 2023 25-04-2023]; Available from: https://cftr2.org/mutations_history.
Zemanick, E.T. & Polineni, D. (2019). Unraveling the CFTR function–phenotype connection for precision treatment in cystic fibrosis. American Thoracic Society, 199(9), 1053–1054.
Wilschanski, M. (2012). Class 1 CF mutations. Frontiers in Pharmacology, 3, 117.
Article PubMed PubMed Central Google Scholar
De Boeck, K., et al. (2014). The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. Journal of Cystic Fibrosis, 13(4), 403–409.
Du, K., Sharma, M., & Lukacs, G. L. (2005). The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nature Structural & Molecular Biology, 12(1), 17–25.
Lukacs, G., et al. (1993). The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. Journal of Biological Chemistry, 268(29), 21592–21598.
Article PubMed CAS Google Scholar
Yu, H., et al. (2012). Ivacaftor potentiation of multiple CFTR channels with gating mutations. Journal of Cystic Fibrosis, 11(3), 237–245.
Article PubMed CAS Google Scholar
LaRusch, J., et al. (2014). Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genetics, 10(7), e1004376.
Article PubMed PubMed Central Google Scholar
Ramalho, A. S., et al. (2009). Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cellular Physiology and Biochemistry, 24(5-6), 335–346.
Article PubMed PubMed Central CAS Google Scholar
Pranke, I., et al. (2019). Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine. Frontiers in Pharmacology, 10, 121.
Article PubMed PubMed Central CAS Google Scholar
Norez, C., et al. (2004). Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods. Journal of Cystic Fibrosis, 3, 119–121.
Article PubMed CAS Google Scholar
Long, K. J., & Walsh, K. B. (1997). Iodide efflux measurements with an iodide-selective electrode: a non-radioactive procedure for monitoring cellular chloride transport. Methods in Cell Science, 19, 207–212.
Ramalho, A. S., et al. (2022). Assays of CFTR function in vitro, ex vivo and in vivo. International Journal of Molecular Sciences, 23(3), 1437.
Article PubMed PubMed Central CAS Google Scholar
Orosz, D. E., & Garlid, K. D. (1993). A sensitive new fluorescence assay for measuring proton transport across liposomal membranes. Analytical Biochemistry, 210(1), 7–15.
Article PubMed CAS Google Scholar
Munkonge, F., et al. (2004). Measurement of halide efflux from cultured and primary airway epithelial cells using fluorescence indicators. Journal of Cystic Fibrosis, 3, 171–176.
Article PubMed CAS Google Scholar
Verkman, A. S., & Jayaraman, S. (2002). Fluorescent indicator methods to assay functional CFTR expression in cells. In Cystic fibrosis methods and protocols, Springer, 187–196.
Smith, E., et al. (2017). A homogeneous cell-based halide-sensitive yellow fluorescence protein assay to identify modulators of the cystic fibrosis transmembrane conductance regulator ion channel. Assay and Drug Development Technologies, 15(8), 395–406.
Article PubMed CAS Google Scholar
Clancy, J. P., et al. (2019). CFTR modulator theratyping: current status, gaps and future directions. Journal of Cystic Fibrosis, 18(1), 22–34.
Comments (0)