The Echocardiographic Evaluation of the Right Heart: Current and Future Advances

Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

Article  PubMed  Google Scholar 

Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. https://doi.org/10.1161/CIRCULATIONAHA.107.653576.

Article  PubMed  Google Scholar 

Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute Working Group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91. https://doi.org/10.1161/CIRCULATIONAHA.106.632208.

Article  PubMed  Google Scholar 

Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care. 2011;15(2):R103. https://doi.org/10.1186/cc10119.

Article  PubMed  PubMed Central  Google Scholar 

Amsallem M, Kuznetsova T, Hanneman K, Denault A, Haddad F. Right heart imaging in patients with heart failure: a tale of two ventricles. Curr Opin Cardiol. 2016;31(5):469–82. https://doi.org/10.1097/HCO.0000000000000315.

Article  PubMed  PubMed Central  Google Scholar 

Ayach B, Fine NM, Rudski LG. Right ventricular strain: measurement and clinical application. Curr Opin Cardiol. 2018;33(5):486–92. https://doi.org/10.1097/HCO.0000000000000540.

Article  PubMed  Google Scholar 

Tadic M, Pieske-Kraigher E, Cuspidi C, et al. Right ventricular strain in heart failure: clinical perspective. Arch Cardiovasc Dis. 2017;110(10):562–71. https://doi.org/10.1016/j.acvd.2017.05.002.

Article  PubMed  Google Scholar 

•• Guazzi M, Naeije R. Right heart phenotype in heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14(4):e007840. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007840. This study demonstrates the incorporation of physiologic principles and multiple parameters to define novel phenotypes of RV dysfunction in patients with HFpEF.

Article  PubMed  PubMed Central  Google Scholar 

•• Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43(38):3618–3731. https://doi.org/10.1093/eurheartj/ehac237. These new guideline recommendations describe the newest principles and definitions in diagnosing pulmonary hypertension using a multi-parametric and multi-modality approach which prioritizes early diagnosis.

Hahn RT, Lerakis S, Delgado V, et al. Multimodality imaging of right heart function. J Am Coll Cardiol. 2023;81(19):1954–73. https://doi.org/10.1016/j.jacc.2023.03.392.

Article  PubMed  Google Scholar 

Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):87. https://doi.org/10.1186/s12968-020-00683-3.

Article  PubMed  PubMed Central  Google Scholar 

Addetia K, Miyoshi T, Amuthan V, et al. Normal values of three-dimensional right ventricular size and function measurements: results of the world alliance societies of echocardiography study. J Am Soc Echocardiogr. Published online April 2023:S0894731723002031. https://doi.org/10.1016/j.echo.2023.04.011.

Carvalho Singulane C, Singh A, Miyoshi T, et al. Sex-, age-, and race-related normal values of right ventricular diastolic function parameters: data from the World Alliance Societies of Echocardiography Study. J Am Soc Echocardiogr. 2022;35(4):426–34. https://doi.org/10.1016/j.echo.2021.10.006.

Article  PubMed  Google Scholar 

Addetia K, Miyoshi T, Citro R, et al. Two-dimensional echocardiographic right ventricular size and systolic function measurements stratified by sex, age, and ethnicity: results of the World Alliance of Societies of Echocardiography Study. J Am Soc Echocardiogr. 2021;34(11):1148-1157.e1. https://doi.org/10.1016/j.echo.2021.06.013.

Article  PubMed  Google Scholar 

Maus TM. TAPSE: a red herring after cardiac surgery. J Cardiothorac Vasc Anesth. 2018;32(2):779–81. https://doi.org/10.1053/j.jvca.2017.11.013.

Article  PubMed  Google Scholar 

Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. https://doi.org/10.1016/j.echo.2010.05.010.

Article  PubMed  Google Scholar 

Schneider M, Binder T. Echocardiographic evaluation of the right heart. Wien Klin Wochenschr. 2018;130(13–14):413–20. https://doi.org/10.1007/s00508-018-1330-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu VCC, Takeuchi M. Echocardiographic assessment of right ventricular systolic function. Cardiovasc Diagn Ther. 2018;8(1):70–79. https://doi.org/10.21037/cdt.2017.06.05.

Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003.

Article  PubMed  Google Scholar 

Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(5):711–21. https://doi.org/10.1161/CIRCIMAGING.113.000640.

Article  PubMed  Google Scholar 

Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J - Cardiovasc Imaging. 2018;19(6):591–600. https://doi.org/10.1093/ehjci/jey042.

Article  PubMed  Google Scholar 

Badano LP, Muraru D, Parati G, Haugaa K, Voigt JU. How to do right ventricular strain. Eur Heart J - Cardiovasc Imaging. 2020;21(8):825–7. https://doi.org/10.1093/ehjci/jeaa126.

Article  PubMed  Google Scholar 

Morris DA, Krisper M, Nakatani S, et al. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J - Cardiovasc Imaging. 2017;18(2):212–23. https://doi.org/10.1093/ehjci/jew011.

Article  PubMed  Google Scholar 

Lu KJ, Chen JXC, Profitis K, et al. Right ventricular global longitudinal strain is an independent predictor of right ventricular function: a multimodality study of cardiac magnetic resonance imaging, real time three-dimensional echocardiography and speckle tracking echocardiography. Echocardiography. 2015;32(6):966–74. https://doi.org/10.1111/echo.12783.

Article  PubMed  Google Scholar 

Hamada-Harimura Y, Seo Y, Ishizu T, et al. Incremental prognostic value of right ventricular strain in patients with acute decompensated heart failure. Circ Cardiovasc Imaging. 2018;11(10):e007249. https://doi.org/10.1161/CIRCIMAGING.117.007249.

Article  PubMed  Google Scholar 

Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1299–309. https://doi.org/10.1378/chest.10-2015.

Article  PubMed  Google Scholar 

Hsia BC, Lai A, Singh S, et al. Validation of American Society of Echocardiography Guideline-recommended parameters of right ventricular dysfunction using artificial intelligence compared with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. Published online June 2023:S0894731723003073. https://doi.org/10.1016/j.echo.2023.05.015.

• Kitano T, Kovács A, Nabeshima Y, et al. Prognostic value of right ventricular strains using novel three-dimensional analytical software in patients with cardiac disease. Front Cardiovasc Med. 2022;9:837584. https://doi.org/10.3389/fcvm.2022.837584. Findings from this study highlight the prognostic value of 3-dimensional RVEF and non-longitudinal strain metrics in a wide array of cardiovascular diseases.

Namisaki H, Nabeshima Y, Kitano T, Otani K, Takeuchi M. Prognostic value of the right ventricular ejection fraction, assessed by fully automated three-dimensional echocardiography: a direct comparison of analyses using right ventricular–focused views versus apical four-chamber views. J Am Soc Echocardiogr. 2021;34(2):117–26. https://doi.org/10.1016/j.echo.2020.09.016.

Article  PubMed  Google Scholar 

Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46. https://doi.org/10.1016/j.echo.2011.11.010.

Article  PubMed  Google Scholar 

Magunia H, Dietrich C, Langer HF, et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018;272:348–55. https://doi.org/10.1016/j.ijcard.2018.06.026.

Article  PubMed  Google Scholar 

Meng Y, Zhu S, Xie Y, et al. Prognostic value of right ventricular 3D speckle-tracking strain and ejection fraction in patients with HFpEF. Front Cardiovasc Med. 2021;8: 694365. https://doi.org/10.3389/fcvm.2021.694365.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Wang T, Haines P, et al. Prognostic value of right ventricular two-dimensional and three-dimensional speckle-tracking strain in pulmonary arterial hypertension: superiority of longitudinal strain over circumferential and radial strain. J Am Soc Echocardiogr. 2020;33(8):985-994.e1. https://doi.org/10.1016/j.echo.2020.03.015.

Article  PubMed  Google Scholar 

Ahmad A, Li H, Zhang Y, et al. Three-dimensional echocardiography assessment of right ventricular volumes and function: technological perspective and clinical application. Diagnostics. 2022;12(4):806. https://doi.org/10.3390/diagnostics12040806.

Lang RM, Addetia K, Narang A, Mor-Avi V. 3-Dimensional echocardiography. JACC Cardiovasc Imaging. 2018;11(12):1854–78. https://doi.org/10.1016/j.jcmg.2018.06.024.

Article  PubMed  Google Scholar 

Tokodi M, Magyar B, Soós A, et al. Deep learning-based prediction of right ventricular ejection fraction using 2D echocardiograms. JACC Cardiovasc Imaging. 2023;16(8):1005–18. https://doi.org/10.1016/j.jcmg.2023.02.017.

Article  PubMed  Google Scholar 

Haddad F, Gomes B. Automation for right heart analysis. JACC Cardiovasc Imaging. 2023;16(8):1019–21. https://doi.org/10.1016/j.jcmg.2023.03.018.

Article  PubMed  Google Scholar 

Lakatos BK, Nabeshima Y, Tokodi M, et al. Importance of nonlongitudinal motion components in right ventricular function: three-dimensional echocardiographic study in healthy volunteers. J Am Soc Echocardiogr. 2020;33(8):995-1005.e1. https://doi.org/10.1016/j.echo.2020.04.002.

Article  PubMed  Google Scholar 

Lakatos B, Tősér Z, Tokodi M, et al. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method. Cardiovasc Ultrasound. 2017;15(1):8. https://doi.org/10.1186/s12947-017-0100-0.

Comments (0)

No login
gif