Drake T, Grivas N, Dabestani S, Knoll T, Lam T, Maclennan S, Petrik A, Skolarikos A, Straub M, Tuerk C, Yuan CY, Sarica K (2017) What are the benefits and harms of ureteroscopy compared with shock-wave lithotripsy in the treatment of upper ureteral stones a systematic review. Eur Urol 72:772–786. https://doi.org/10.1016/j.eururo.2017.04.016
Preminger GM (2006) Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res 34:108–111. https://doi.org/10.1007/s00240-005-0020-6
Chongruksut W, Lojanapiwat B, Ayudhya VC, Tawichasri C, Patumanond J, Paichitvichean S (2011) Prognostic factors for success in treating kidney stones by extracorporeal shock wave lithotripsy. J Med Assoc Thai 94:331–336
Wiesenthal JD, Ghiculete D, D’A Honey RJ, Pace KT, (2010) Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res 38:307–313. https://doi.org/10.1007/s00240-010-0295-0
Yamashita S, Kohjimoto Y, Iwahashi Y, Iguchi T, Nishizawa S, Kikkawa K, Hara I (2018) Noncontrast computed tomography parameters for predicting shock wave lithotripsy outcome in upper urinary tract stone cases. Biomed Res Int 2018:9253952. https://doi.org/10.1155/2018/9253952
Article PubMed PubMed Central Google Scholar
Lee JY, Kim JH, Kang DH, Chung DY, Lee DH, Do Jung H, Kwon JK, Cho KS (2016) Stone heterogeneity index as the standard deviation of Hounsfield units: a novel predictor for shock-wave lithotripsy outcomes in ureter calculi. Sci Rep 6:23988. https://doi.org/10.1038/srep23988
Article CAS PubMed PubMed Central Google Scholar
Yamashita S, Kohjimoto Y, Iguchi T, Nishizawa S, Iba A, Kikkawa K, Hara I (2017) Variation coefficient of stone density: a novel predictor of the outcome of extracorporeal shockwave lithotripsy. J Endourol 31:384–390. https://doi.org/10.1089/end.2016.0719
Yamashita S, Kohjimoto Y, Iguchi T, Nishizawa S, Kikkawa K, Hara I (2019) Ureteral wall volume at ureteral stone site is a critical predictor for shock wave lithotripsy outcomes: comparison with ureteral wall thickness and area. Urolithiasis 48(4):361–368. https://doi.org/10.1007/s00240-019-01154-w
Article CAS PubMed Google Scholar
Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69:475–482. https://doi.org/10.1016/j.eururo.2015.07.041
Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, Pace KT, Pais VM Jr, Pearle MS, Preminger GM, Razvi H, Shah O, Matlaga BR (2016) Surgical management of stones: American Urological Association/Endourological Society Guideline, PART I. J Urol 196:1153–1160. https://doi.org/10.1016/j.juro.2016.05.090
Mannil M, von Spiczak J, Hermanns T, Poyet C, Alkadhi H, Fankhauser CD (2018) Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones. J Urol 200:829–836. https://doi.org/10.1016/j.juro.2018.04.059
Fisher A, Rudin C, Dominici F (2019) All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J Mach Learn Res 20:177
PubMed PubMed Central Google Scholar
Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555
Kumar Y, Koul A, Singla R, Ijaz MF (2023) Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Human Comput 14:8459–8486. https://doi.org/10.1007/s12652-021-03612-z
Yasui T, Iguchi M, Suzuki S, Kohri K (2008) Prevalence and epidemiological characteristics of urolithiasis in Japan: national trends between 1965 and 2005. Urology 71:209–213. https://doi.org/10.1016/j.urology.2007.09.034
Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13:252–264. https://doi.org/10.1109/34.75512
Comments (0)