A mouse model for the study of diet-induced changes in intestinal microbiome composition on renal calcium oxalate crystal formation

Dhondup T, Kittanamongkolchai W, Vaughan LE et al (2018) Risk of ESRD and mortality in kidney and bladder stone formers. Am J Kidney Dis 72:790–797. https://doi.org/10.1053/j.ajkd.2018.06.012

Article  PubMed  PubMed Central  Google Scholar 

Qian X, Wan J, Xu J et al (2022) Epidemiological trends of Urolithiasis at the Global, Regional, and national levels: a Population-based study. Int J Clin Pract 2022(6807203). https://doi.org/10.1155/2022/6807203

Lang J, Narendrula A, El-Zawahry A et al (2022) Global trends in Incidence and Burden of Urolithiasis from 1990 to 2019: an analysis of global burden of Disease Study Data. Eur Urol Open Sci 35:37–46. https://doi.org/10.1016/j.euros.2021.10.008

Article  PubMed  PubMed Central  Google Scholar 

Fink HA, Wilt TJ, Eidman KE et al (2012) Recurrent nephrolithiasis in adults: comparative effectiveness of Preventive Medical Strategies. Agency for Healthcare Research and Quality (US). Rockville (MD)

Khan SR, Pearle MS, Robertson WG et al (2016) Kidney stones. Nat Rev Dis Primer 2:16008. https://doi.org/10.1038/nrdp.2016.8

Article  Google Scholar 

Bhasin B, Ürekli HM, Atta MG (2015) Primary and secondary hyperoxaluria: understanding the enigma. World J Nephrol 4:235–244. https://doi.org/10.5527/wjn.v4.i2.235

Article  PubMed  PubMed Central  Google Scholar 

Choy W, Adler A, Morgan-Lang C et al (2024) Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease. Urolithiasis 52:38. https://doi.org/10.1007/s00240-024-01534-x

Article  CAS  PubMed  Google Scholar 

Denburg MR, Koepsell K, Lee J-J et al (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney Stone Disease. J Am Soc Nephrol JASN 31:1358–1369. https://doi.org/10.1681/ASN.2019101131

Article  CAS  PubMed  Google Scholar 

Knauf F, Velazquez H, Pfann V et al (2019) Characterization of renal NaCl and oxalate transport in Slc26a6–/– mice. Am J Physiol-Ren Physiol 316:F128–F133. https://doi.org/10.1152/ajprenal.00309.2018

Article  CAS  Google Scholar 

Knight J, Holmes RP, Cramer SD et al (2012) Hydroxyproline metabolism in mouse models of primary hyperoxaluria. Am J Physiol Ren Physiol 302:F688–693. https://doi.org/10.1152/ajprenal.00473.2011

Article  CAS  Google Scholar 

Salido EC, Li XM, Lu Y et al (2006) Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci U S A 103:18249–18254. https://doi.org/10.1073/pnas.0607218103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vernon HJ, Osborne C, Tzortzaki EG et al (2005) Aprt/Opn double knockout mice: osteopontin is a modifier of kidney stone disease severity. Kidney Int 68:938–947. https://doi.org/10.1111/j.1523-1755.2005.00487.x

Article  CAS  PubMed  Google Scholar 

Mo L, Huang H-Y, Zhu X-H et al (2004) Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159–1166. https://doi.org/10.1111/j.1523-1755.2004.00867.x

Article  CAS  PubMed  Google Scholar 

Chau H, El-Maadawy S, McKee MD, Tenenhouse HS (2003) Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Min Res off J Am Soc Bone Min Res 18:644–657. https://doi.org/10.1359/jbmr.2003.18.4.644

Article  CAS  Google Scholar 

Knauf F, Asplin JR, Granja I et al (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901. https://doi.org/10.1038/ki.2013.207

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Araújo L, Costa-Pessoa JM, de Ponte MC, Oliveira-Souza M (2020) Sodium Oxalate-Induced Acute kidney Injury Associated with glomerular and tubulointerstitial damage in rats. Front Physiol 11:1076. https://doi.org/10.3389/fphys.2020.01076

Article  PubMed  PubMed Central  Google Scholar 

Okada A, Nomura S, Higashibata Y et al (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89–99. https://doi.org/10.1007/s00240-007-0082-8

Article  CAS  PubMed  Google Scholar 

Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59–69

CAS  PubMed  PubMed Central  Google Scholar 

Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226–230. https://doi.org/10.1016/s0022-5347(17)37202-6

Article  CAS  PubMed  Google Scholar 

Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the fixed particle theory in vivo. Nephrol Dial Transplant off Publ Eur Dial Transpl Assoc -. Eur Ren Assoc 24:3659–3668. https://doi.org/10.1093/ndt/gfp418

Article  CAS  Google Scholar 

Lee YH, Huang WC, Huang JK, Chang LS (1996) Testosterone enhances whereas estrogen inhibits calcium oxalate stone formation in ethylene glycol treated rats. J Urol 156:502–505. https://doi.org/10.1097/00005392-199608000-00071

Article  CAS  PubMed  Google Scholar 

Blood FR (1965) Chronic toxicity of ethylene glycol in the rat. Food Cosmet Toxicol 3:229–234. https://doi.org/10.1016/s0015-6264(65)80080-3

Article  CAS  PubMed  Google Scholar 

Khan SR, Glenton PA (2010) Of mice and men: experimental induction of Calcium Oxalate Nephrolithiasis in mice. J Urol 184:1189–1196. https://doi.org/10.1016/j.juro.2010.04.065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney Int 70:914–923. https://doi.org/10.1038/sj.ki.5001699

Article  CAS  PubMed  Google Scholar 

Ogawa Y, Yamaguchi K, Morozumi M (1990) Effects of magnesium salts in preventing experimental oxalate urolithiasis in rats. J Urol 144:385–389. https://doi.org/10.1016/s0022-5347(17)39466-1

Article  CAS  PubMed  Google Scholar 

Mulay SR, Eberhard JN, Pfann V et al (2016) Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am J Physiol Ren Physiol 310:F785–F795. https://doi.org/10.1152/ajprenal.00488.2015

Article  CAS  Google Scholar 

Crestani T, Crajoinas RO, Jensen L et al (2021) A Sodium Oxalate-Rich Diet induces chronic kidney Disease and Cardiac Dysfunction in rats. Int J Mol Sci 22:9244. https://doi.org/10.3390/ijms22179244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffman JF, Fan AX, Neuendorf EH et al (2018) Hydrophobic sand Versus metabolic cages: a comparison of urine Collection methods for rats (Rattus norvegicus). J Am Assoc Lab Anim Sci JAALAS 57:51–57

PubMed  Google Scholar 

Oksanen J, Blanchet FG, Kindt R et al (2010) H.(2010): Vegan: Community Ecology Package. R package, version 1.17-4

Zhu L-B, Zhang Y-C, Huang H-H, Lin J (2021) Prospects for clinical applications of butyrate-producing bacteria. World J Clin Pediatr 10:84–92. https://doi.org/10.5409/wjcp.v10.i5.84

Article  PubMed  PubMed Central  Google Scholar 

Turroni S, Vitali B, Bendazzoli C et al (2007) Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl‐CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol 103:1600–1609. https://doi.org/10.1111/j.1365-2672.2007.03388.x

Article  CAS  PubMed  Google Scholar 

Chamberlain CA, Hatch M, Garrett TJ (2019) Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS ONE 14:e0222393. https://doi.org/10.1

Comments (0)

No login
gif