Dhondup T, Kittanamongkolchai W, Vaughan LE et al (2018) Risk of ESRD and mortality in kidney and bladder stone formers. Am J Kidney Dis 72:790–797. https://doi.org/10.1053/j.ajkd.2018.06.012
Article PubMed PubMed Central Google Scholar
Qian X, Wan J, Xu J et al (2022) Epidemiological trends of Urolithiasis at the Global, Regional, and national levels: a Population-based study. Int J Clin Pract 2022(6807203). https://doi.org/10.1155/2022/6807203
Lang J, Narendrula A, El-Zawahry A et al (2022) Global trends in Incidence and Burden of Urolithiasis from 1990 to 2019: an analysis of global burden of Disease Study Data. Eur Urol Open Sci 35:37–46. https://doi.org/10.1016/j.euros.2021.10.008
Article PubMed PubMed Central Google Scholar
Fink HA, Wilt TJ, Eidman KE et al (2012) Recurrent nephrolithiasis in adults: comparative effectiveness of Preventive Medical Strategies. Agency for Healthcare Research and Quality (US). Rockville (MD)
Khan SR, Pearle MS, Robertson WG et al (2016) Kidney stones. Nat Rev Dis Primer 2:16008. https://doi.org/10.1038/nrdp.2016.8
Bhasin B, Ürekli HM, Atta MG (2015) Primary and secondary hyperoxaluria: understanding the enigma. World J Nephrol 4:235–244. https://doi.org/10.5527/wjn.v4.i2.235
Article PubMed PubMed Central Google Scholar
Choy W, Adler A, Morgan-Lang C et al (2024) Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease. Urolithiasis 52:38. https://doi.org/10.1007/s00240-024-01534-x
Article CAS PubMed Google Scholar
Denburg MR, Koepsell K, Lee J-J et al (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney Stone Disease. J Am Soc Nephrol JASN 31:1358–1369. https://doi.org/10.1681/ASN.2019101131
Article CAS PubMed Google Scholar
Knauf F, Velazquez H, Pfann V et al (2019) Characterization of renal NaCl and oxalate transport in Slc26a6–/– mice. Am J Physiol-Ren Physiol 316:F128–F133. https://doi.org/10.1152/ajprenal.00309.2018
Knight J, Holmes RP, Cramer SD et al (2012) Hydroxyproline metabolism in mouse models of primary hyperoxaluria. Am J Physiol Ren Physiol 302:F688–693. https://doi.org/10.1152/ajprenal.00473.2011
Salido EC, Li XM, Lu Y et al (2006) Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci U S A 103:18249–18254. https://doi.org/10.1073/pnas.0607218103
Article CAS PubMed PubMed Central Google Scholar
Vernon HJ, Osborne C, Tzortzaki EG et al (2005) Aprt/Opn double knockout mice: osteopontin is a modifier of kidney stone disease severity. Kidney Int 68:938–947. https://doi.org/10.1111/j.1523-1755.2005.00487.x
Article CAS PubMed Google Scholar
Mo L, Huang H-Y, Zhu X-H et al (2004) Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159–1166. https://doi.org/10.1111/j.1523-1755.2004.00867.x
Article CAS PubMed Google Scholar
Chau H, El-Maadawy S, McKee MD, Tenenhouse HS (2003) Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Min Res off J Am Soc Bone Min Res 18:644–657. https://doi.org/10.1359/jbmr.2003.18.4.644
Knauf F, Asplin JR, Granja I et al (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901. https://doi.org/10.1038/ki.2013.207
Article CAS PubMed PubMed Central Google Scholar
de Araújo L, Costa-Pessoa JM, de Ponte MC, Oliveira-Souza M (2020) Sodium Oxalate-Induced Acute kidney Injury Associated with glomerular and tubulointerstitial damage in rats. Front Physiol 11:1076. https://doi.org/10.3389/fphys.2020.01076
Article PubMed PubMed Central Google Scholar
Okada A, Nomura S, Higashibata Y et al (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89–99. https://doi.org/10.1007/s00240-007-0082-8
Article CAS PubMed Google Scholar
Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59–69
CAS PubMed PubMed Central Google Scholar
Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226–230. https://doi.org/10.1016/s0022-5347(17)37202-6
Article CAS PubMed Google Scholar
Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the fixed particle theory in vivo. Nephrol Dial Transplant off Publ Eur Dial Transpl Assoc -. Eur Ren Assoc 24:3659–3668. https://doi.org/10.1093/ndt/gfp418
Lee YH, Huang WC, Huang JK, Chang LS (1996) Testosterone enhances whereas estrogen inhibits calcium oxalate stone formation in ethylene glycol treated rats. J Urol 156:502–505. https://doi.org/10.1097/00005392-199608000-00071
Article CAS PubMed Google Scholar
Blood FR (1965) Chronic toxicity of ethylene glycol in the rat. Food Cosmet Toxicol 3:229–234. https://doi.org/10.1016/s0015-6264(65)80080-3
Article CAS PubMed Google Scholar
Khan SR, Glenton PA (2010) Of mice and men: experimental induction of Calcium Oxalate Nephrolithiasis in mice. J Urol 184:1189–1196. https://doi.org/10.1016/j.juro.2010.04.065
Article CAS PubMed PubMed Central Google Scholar
Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney Int 70:914–923. https://doi.org/10.1038/sj.ki.5001699
Article CAS PubMed Google Scholar
Ogawa Y, Yamaguchi K, Morozumi M (1990) Effects of magnesium salts in preventing experimental oxalate urolithiasis in rats. J Urol 144:385–389. https://doi.org/10.1016/s0022-5347(17)39466-1
Article CAS PubMed Google Scholar
Mulay SR, Eberhard JN, Pfann V et al (2016) Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am J Physiol Ren Physiol 310:F785–F795. https://doi.org/10.1152/ajprenal.00488.2015
Crestani T, Crajoinas RO, Jensen L et al (2021) A Sodium Oxalate-Rich Diet induces chronic kidney Disease and Cardiac Dysfunction in rats. Int J Mol Sci 22:9244. https://doi.org/10.3390/ijms22179244
Article CAS PubMed PubMed Central Google Scholar
Hoffman JF, Fan AX, Neuendorf EH et al (2018) Hydrophobic sand Versus metabolic cages: a comparison of urine Collection methods for rats (Rattus norvegicus). J Am Assoc Lab Anim Sci JAALAS 57:51–57
Oksanen J, Blanchet FG, Kindt R et al (2010) H.(2010): Vegan: Community Ecology Package. R package, version 1.17-4
Zhu L-B, Zhang Y-C, Huang H-H, Lin J (2021) Prospects for clinical applications of butyrate-producing bacteria. World J Clin Pediatr 10:84–92. https://doi.org/10.5409/wjcp.v10.i5.84
Article PubMed PubMed Central Google Scholar
Turroni S, Vitali B, Bendazzoli C et al (2007) Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl‐CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol 103:1600–1609. https://doi.org/10.1111/j.1365-2672.2007.03388.x
Article CAS PubMed Google Scholar
Chamberlain CA, Hatch M, Garrett TJ (2019) Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS ONE 14:e0222393. https://doi.org/10.1
Comments (0)