Hong SH, Lee HJ, Sohn EJ, Ko HS, Shim BS, Ahn KS, Kim SH (2013) Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol Rep 65:970–979. https://doi.org/10.1016/s1734-1140(13)71078-8
Article CAS PubMed Google Scholar
Worcester EM, Coe FL (2010) Clinical practice. Calcium kidney stones. N Engl J Med 363:954–963. https://doi.org/10.1056/NEJMcp1001011
Article CAS PubMed PubMed Central Google Scholar
Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69:475–482. https://doi.org/10.1016/j.eururo.2015.07.041
Prieto D, Contreras C, Sánchez A (2014) Endothelial dysfunction, obesity and insulin resistance. Curr Vasc Pharmacol 12:412–426. https://doi.org/10.2174/1570161112666140423221008
Article CAS PubMed Google Scholar
Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25:831–841. https://doi.org/10.1007/s00467-009-1116-y
Besenhofer LM, Cain MC, Dunning C, McMartin KE (2012) Aluminum citrate prevents renal injury from calcium oxalate crystal deposition. J Am Soc Nephrol 23:2024–2033. https://doi.org/10.1681/ASN.2012040357
Article CAS PubMed PubMed Central Google Scholar
Spernat D, Kourambas J (2011) Urolithiasis–medical therapies. BJU Int 108(Suppl 2):9–13. https://doi.org/10.1111/j.1464-410X.2011.10688.x
Zheng L, Han X, Hu Y et al (2019) Dioscin ameliorates intestinal ischemia/reperfusion injury via adjusting miR-351-5p/MAPK13-mediated inflammation and apoptosis. Pharmacol Res 139:431–439. https://doi.org/10.1016/j.phrs.2018.11.040
Article CAS PubMed Google Scholar
Qiao Y, Xu L, Tao X et al (2018) Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett 284:37–45. https://doi.org/10.1016/j.toxlet.2017.11.031
Article CAS PubMed Google Scholar
Cai S, Chen J, Li Y (2020) Dioscin protects against diabetic nephropathy by inhibiting renal inflammation through TLR4/NF-κB pathway in mice. Immunobiology 225:151941. https://doi.org/10.1016/j.imbio.2020.151941
Article CAS PubMed Google Scholar
Zhong Y, Liu J, Sun D, Guo T, Yao Y, Xia X, Shi C, Peng X (2022) Dioscin relieves diabetic nephropathy via suppressing oxidative stress and apoptosis, and improving mitochondrial quality and quantity control. Food Funct 13:3660–3673. https://doi.org/10.1039/d1fo02733f
Article CAS PubMed Google Scholar
Li R, Li Y, Liang X, Yang L, Su M, Lai KP (2021) Network pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets. Brief Bioinform 22:1279–1290. https://doi.org/10.1093/bib/bbaa300
Article CAS PubMed Google Scholar
Li Y, Gao M, Yin LH, Xu LN, Qi Y, Sun P, Peng JY (2021) Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic Biol Med 169:99–109. https://doi.org/10.1016/j.freeradbiomed.2021.03.035
Article CAS PubMed Google Scholar
Yan Q, Hu Q, Li G, Qi Q, Song Z, Shu J, Liang H, Liu H, Hao Z (2023) NEAT1 regulates calcium oxalate crystal-induced renal tubular oxidative injury via miR-130/IRF1. Antioxid Redox Signal 38:731–746. https://doi.org/10.1089/ars.2022.0008
Article CAS PubMed Google Scholar
Wang S, Zheng Y, Jin S, Fu Y, Liu Y (2022) Dioscin protects against cisplatin-induced acute kidney injury by reducing ferroptosis and apoptosis through activating Nrf2/HO-1 signaling. Antioxidants (Basel) 11:2443. https://doi.org/10.3390/antiox11122443
Article CAS PubMed Google Scholar
Jin S, Guan T, Wang S, Hu M, Liu X, Huang S, Liu Y (2022) Dioscin alleviates cisplatin-induced mucositis in rats by modulating gut microbiota, enhancing intestinal barrier function and attenuating TLR4/NF-κB signaling cascade. Int J Mol Sci 23:4431. https://doi.org/10.3390/ijms23084431
Article CAS PubMed PubMed Central Google Scholar
Yao H, Hu C, Yin L et al (2016) Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. Int Immunopharmacol 36:132–141. https://doi.org/10.1016/j.intimp.2016.04.023
Article CAS PubMed Google Scholar
Chaiyarit S, Thongboonkerd V (2023) Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 21:294. https://doi.org/10.1186/s12967-023-04133-3
Article CAS PubMed PubMed Central Google Scholar
Yingqiu X, Chengling M, Bexultan K et al (2021) Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv 28(1):2187–2197
Qi M, Yin L, Xu L et al (2016) Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-7i/TLR4/MyD88 signaling pathway. Pharmacol Res 111:509–522. https://doi.org/10.1016/j.phrs.2016.07.016
Article CAS PubMed Google Scholar
Kolati SR, Kasala ER, Bodduluru LN, Mahareddy JR, Uppulapu SK, Gogoi R, Barua CC, Lahkar M (2015) BAY 11–7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Environ Toxicol Pharmacol 39:690–699. https://doi.org/10.1016/j.etap.2015.01.019
Article CAS PubMed Google Scholar
Umbro I, Gentile G, Tinti F, Muiesan P, Mitterhofer AP (2016) Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. J Infect 72:131–142. https://doi.org/10.1016/j.jinf.2015.11.008
Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696. https://doi.org/10.1038/nrneph.2011.149
Article CAS PubMed PubMed Central Google Scholar
Mailloux M (1985) Identification of the first human Leptospira strain in the island of La Réunion. Bull Soc Pathol Exot Filiales 78:28–30
Luo SF, Fang RY, Hsieh HL, Chi PL, Lin CC, Hsiao LD, Wu CC, Wang JS, Yang CM (2010) Involvement of MAPKs and NF-kappaB in tumor necrosis factor alpha-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 62:105–116. https://doi.org/10.1002/art.25060
Article CAS PubMed Google Scholar
Tucker PS, Scanlan AT, Dalbo VJ (2015) Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev 2015:806358. https://doi.org/10.1155/2015/806358
Article PubMed PubMed Central Google Scholar
Jafari Khataylou Y, Ahmadi Afshar S, Mirzakhani N (2021) Betulinic acid reduces the complications of autoimmune diabetes on the body and kidney through effecting on inflammatory cytokines in C57BL/6 mice. Vet Res Forum 12:203–210. https://doi.org/10.30466/vrf.2019.101178.2409
Article PubMed PubMed Central Google Scholar
Chen J, Hu Q, Luo Y et al (2022) Salvianolic acid B attenuates membranous nephropathy by activating renal autophagy via microRNA-145-5p/phosphatidylinositol 3-kinase/AKT pathway. Bioengineered 13:13956–13969. https://doi.org/10.1080/21655979.2022.2083822
Comments (0)