Based on network pharmacology, the mechanism of Dioscin in alleviating renal tubular epithelial cell injury induced by calcium oxalate crystals was explored

Hong SH, Lee HJ, Sohn EJ, Ko HS, Shim BS, Ahn KS, Kim SH (2013) Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol Rep 65:970–979. https://doi.org/10.1016/s1734-1140(13)71078-8

Article  CAS  PubMed  Google Scholar 

Worcester EM, Coe FL (2010) Clinical practice. Calcium kidney stones. N Engl J Med 363:954–963. https://doi.org/10.1056/NEJMcp1001011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69:475–482. https://doi.org/10.1016/j.eururo.2015.07.041

Article  PubMed  Google Scholar 

Prieto D, Contreras C, Sánchez A (2014) Endothelial dysfunction, obesity and insulin resistance. Curr Vasc Pharmacol 12:412–426. https://doi.org/10.2174/1570161112666140423221008

Article  CAS  PubMed  Google Scholar 

Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25:831–841. https://doi.org/10.1007/s00467-009-1116-y

Article  PubMed  Google Scholar 

Besenhofer LM, Cain MC, Dunning C, McMartin KE (2012) Aluminum citrate prevents renal injury from calcium oxalate crystal deposition. J Am Soc Nephrol 23:2024–2033. https://doi.org/10.1681/ASN.2012040357

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spernat D, Kourambas J (2011) Urolithiasis–medical therapies. BJU Int 108(Suppl 2):9–13. https://doi.org/10.1111/j.1464-410X.2011.10688.x

Article  PubMed  Google Scholar 

Zheng L, Han X, Hu Y et al (2019) Dioscin ameliorates intestinal ischemia/reperfusion injury via adjusting miR-351-5p/MAPK13-mediated inflammation and apoptosis. Pharmacol Res 139:431–439. https://doi.org/10.1016/j.phrs.2018.11.040

Article  CAS  PubMed  Google Scholar 

Qiao Y, Xu L, Tao X et al (2018) Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett 284:37–45. https://doi.org/10.1016/j.toxlet.2017.11.031

Article  CAS  PubMed  Google Scholar 

Cai S, Chen J, Li Y (2020) Dioscin protects against diabetic nephropathy by inhibiting renal inflammation through TLR4/NF-κB pathway in mice. Immunobiology 225:151941. https://doi.org/10.1016/j.imbio.2020.151941

Article  CAS  PubMed  Google Scholar 

Zhong Y, Liu J, Sun D, Guo T, Yao Y, Xia X, Shi C, Peng X (2022) Dioscin relieves diabetic nephropathy via suppressing oxidative stress and apoptosis, and improving mitochondrial quality and quantity control. Food Funct 13:3660–3673. https://doi.org/10.1039/d1fo02733f

Article  CAS  PubMed  Google Scholar 

Li R, Li Y, Liang X, Yang L, Su M, Lai KP (2021) Network pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets. Brief Bioinform 22:1279–1290. https://doi.org/10.1093/bib/bbaa300

Article  CAS  PubMed  Google Scholar 

Li Y, Gao M, Yin LH, Xu LN, Qi Y, Sun P, Peng JY (2021) Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic Biol Med 169:99–109. https://doi.org/10.1016/j.freeradbiomed.2021.03.035

Article  CAS  PubMed  Google Scholar 

Yan Q, Hu Q, Li G, Qi Q, Song Z, Shu J, Liang H, Liu H, Hao Z (2023) NEAT1 regulates calcium oxalate crystal-induced renal tubular oxidative injury via miR-130/IRF1. Antioxid Redox Signal 38:731–746. https://doi.org/10.1089/ars.2022.0008

Article  CAS  PubMed  Google Scholar 

Wang S, Zheng Y, Jin S, Fu Y, Liu Y (2022) Dioscin protects against cisplatin-induced acute kidney injury by reducing ferroptosis and apoptosis through activating Nrf2/HO-1 signaling. Antioxidants (Basel) 11:2443. https://doi.org/10.3390/antiox11122443

Article  CAS  PubMed  Google Scholar 

Jin S, Guan T, Wang S, Hu M, Liu X, Huang S, Liu Y (2022) Dioscin alleviates cisplatin-induced mucositis in rats by modulating gut microbiota, enhancing intestinal barrier function and attenuating TLR4/NF-κB signaling cascade. Int J Mol Sci 23:4431. https://doi.org/10.3390/ijms23084431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao H, Hu C, Yin L et al (2016) Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. Int Immunopharmacol 36:132–141. https://doi.org/10.1016/j.intimp.2016.04.023

Article  CAS  PubMed  Google Scholar 

Chaiyarit S, Thongboonkerd V (2023) Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 21:294. https://doi.org/10.1186/s12967-023-04133-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yingqiu X, Chengling M, Bexultan K et al (2021) Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv 28(1):2187–2197

Article  Google Scholar 

Qi M, Yin L, Xu L et al (2016) Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-7i/TLR4/MyD88 signaling pathway. Pharmacol Res 111:509–522. https://doi.org/10.1016/j.phrs.2016.07.016

Article  CAS  PubMed  Google Scholar 

Kolati SR, Kasala ER, Bodduluru LN, Mahareddy JR, Uppulapu SK, Gogoi R, Barua CC, Lahkar M (2015) BAY 11–7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Environ Toxicol Pharmacol 39:690–699. https://doi.org/10.1016/j.etap.2015.01.019

Article  CAS  PubMed  Google Scholar 

Umbro I, Gentile G, Tinti F, Muiesan P, Mitterhofer AP (2016) Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. J Infect 72:131–142. https://doi.org/10.1016/j.jinf.2015.11.008

Article  PubMed  Google Scholar 

Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696. https://doi.org/10.1038/nrneph.2011.149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mailloux M (1985) Identification of the first human Leptospira strain in the island of La Réunion. Bull Soc Pathol Exot Filiales 78:28–30

CAS  PubMed  Google Scholar 

Luo SF, Fang RY, Hsieh HL, Chi PL, Lin CC, Hsiao LD, Wu CC, Wang JS, Yang CM (2010) Involvement of MAPKs and NF-kappaB in tumor necrosis factor alpha-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 62:105–116. https://doi.org/10.1002/art.25060

Article  CAS  PubMed  Google Scholar 

Tucker PS, Scanlan AT, Dalbo VJ (2015) Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev 2015:806358. https://doi.org/10.1155/2015/806358

Article  PubMed  PubMed Central  Google Scholar 

Jafari Khataylou Y, Ahmadi Afshar S, Mirzakhani N (2021) Betulinic acid reduces the complications of autoimmune diabetes on the body and kidney through effecting on inflammatory cytokines in C57BL/6 mice. Vet Res Forum 12:203–210. https://doi.org/10.30466/vrf.2019.101178.2409

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Hu Q, Luo Y et al (2022) Salvianolic acid B attenuates membranous nephropathy by activating renal autophagy via microRNA-145-5p/phosphatidylinositol 3-kinase/AKT pathway. Bioengineered 13:13956–13969. https://doi.org/10.1080/21655979.2022.2083822

Article  CAS 

Comments (0)

No login
gif