Time-resolved fluorescence nanoprobe of acetylcholinesterase based on ZnGeO:Mn luminescence nanorod modified with metal ions

Silman I, Sussman JL. Acetylcholinesterase: how is structure related to function? Chem Biol Interact. 2008;175:3–10.

Article  CAS  PubMed  Google Scholar 

Paraoanu LE, Layer PG. Acetylcholinesterase in cell adhesion, neurite growth and network formation. FEBS J. 2008;275(4):618–24.

Article  CAS  PubMed  Google Scholar 

Steinritz D, Emmler J, Hintz M, Worek F, Kreppel H, Szinicz L, Kehe K. Apoptosis in sulfur mustard treated A549 cell cultures. Life Sci. 2007;80:2199–201.

Article  CAS  PubMed  Google Scholar 

Zhang B, Yang L, Yu LY, Lin B, Hou YN, Wu J, Huang Q, Han YF, Guo LH, Ouyang Q, Zhang B, Lu L, Zhang XJ. Acetylcholinesterase is associated with apoptosis in cells and contributes to insulin-dependent diabetes mellitus pathogenesis. Acta Biochim Biophy Sin. 2012;44(3):207–16.

Article  CAS  Google Scholar 

Campanari ML, Navarrete F, Ginsberg SD, Manzanares J, Saez-Valero J, Garcia-Ayllon MS. Increased expression of readthrough acetylcholinesterase variants in the brains of Alzheimer’s disease patients. J Alzheimers Dis. 2016;53(3):831–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramaniam R, Astot C, Juhlin L, Nilsson C, Ostin A. Direct derivatization and rapid GC-MS screening of nerve agent markers in aqueous samples. Anal Chem. 2010;82(17):7452–9.

Article  CAS  PubMed  Google Scholar 

Liang P, Kang CY, Yang EJ, Ge XX, Du D, Lin YH. A sensitive magnetic nanoparticle-based immunoassay of phosphorylated acetylcholinesterase using protein cage templated lead phosphate for signal amplification with graphite furnace atomic absorption spectrometry detection. Analyst. 2016;141(7):2278–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye C, Wang MQ, Zhong X, Chen S, Chai Y, Yuan R. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform. Biosens Bioelectron. 2016;79:34–40.

Article  CAS  PubMed  Google Scholar 

Zhang JJ, Zheng WS, Jiang XY. Ag+-gated surface chemistry of gold nanoparticles and colorimetric detection of acetylcholinesterase. Small. 2018;14(31):1801680.

Article  Google Scholar 

Xiao T, Wang S, Yan MX, Huang JS, Yang XR. A thiamine-triggered fluormetric assay for acetylcholinesterase activity and inhibitor screening based on oxidase-like activity of MnO2 nanosheets. Talanta. 2021;221:121362.

Article  CAS  PubMed  Google Scholar 

Guo ZQ, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43(1):16–29.

Article  PubMed  Google Scholar 

Suhling K, French PMW, Phillips D. Time-resolved fluorescence microscopy. Photoch Photobio Sci. 2005;4(1):13–22.

Article  CAS  Google Scholar 

Deng QS, Zhu Z, Shu XW. Auto-phase-locked time-resolved luminescence detection: principles, applications, and prospects. Front Chem. 2020;8:562.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan JL, Wang GL. Lanthanide-based luminescence probes and time-resolved luminescence bioassays. Trends Anal Chem. 2006;25(5):490–500.

Article  CAS  Google Scholar 

Liang L, Chen N, Jia YY, Ma QQ, Wang J, Yuan Q, Tan WH. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019;12(6):1279–92.

Article  CAS  Google Scholar 

Zhao X, Chen LJ, Zhao KC, Liu YS, Liu JL, Yan XP. Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. Trends Anal Chem. 2019;118:65–72.

Article  CAS  Google Scholar 

Wu SQ, Li Y, Ding WH, Xu LT, Ma Y, Zhang LB. Recent advances of persistent luminescence nanoparticles in bioapplications. Nanomicro Lett. 2020;12(1):1–26.

Google Scholar 

Wu BY, Wang HF, Chen JT, Yan XP. Fluorescence resonance energy transfer inhibition assay for alpha-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J Am Chem Soc. 2011;133(4):686–8.

Article  CAS  PubMed  Google Scholar 

Li Y, Gecevicius M, Qiu JR. Long persistent phosphors-from fundamentals to applications. Chem Soc Rev. 2016;45(8):2090–136.

Article  CAS  PubMed  Google Scholar 

Tang YR, Song HJ, Su YY, Lv Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem. 2013;85(24):11876–84.

Article  CAS  PubMed  Google Scholar 

Liang T, Li Z, Song D, Shen L, Zhuang QG, Liu ZH. Modulating the luminescence of upconversion nanoparticles with heavy metal ions: a new strategy for probe design. Anal Chem. 2016;88(20):9989–95.

Article  CAS  PubMed  Google Scholar 

Feng Y, Zhang LC, Liu R, Lv Y. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. Biosens Bioelectron. 2019;144:111671.

Article  CAS  PubMed  Google Scholar 

Feng Y, Song HJ, Deng DY, Lv Y. Engineering ratiometric persistent luminous sensor arrays for biothiols identification. Anal Chem. 2020;92(9):6645–53.

Article  CAS  PubMed  Google Scholar 

Ye QX, Ren SF, Huang H, Duan GG, Liu KM, Liu JB. Fluorescent and colorimetric sensors based on the oxidation of o-phenylenediamine. ACS Omega. 2020;5:20698–706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Kutsanedzie FYH, Cheng W, Agyekum AA, Li HH, Chen QS. A nanosystem composed of upconversion nanoparticles and N, N-diethyl-p-phenylenediamine for fluorimetric determination of ferric ion. Microchim Acta. 2018;185(378):1–8.

Google Scholar 

Gao LF, Zhang X, Yang RL, Lv ZW, Yang WG, Hu YH, Zhou B. Time-resolved fluorescence determination of albumin using ZnGeO: Mn luminescence nanorods modified with polydopamine nanoparticles. Microchim Acta. 2021;188(12):429.

Article  CAS  Google Scholar 

Wu SQ, Qian ZH, Li Y, Hu SP, Ma Y, Wei SY, Zhang LB. Persistent luminescence nanoplatform with Fenton-like catalytic activity for tumor multimodal imaging and photoenhanced combination therapy. ACS Appl Mater Interfaces. 2020;12(23):25572–80.

Article  CAS  PubMed  Google Scholar 

Wang YQ, Li ZH, Lin QS, Wei YR, Wang J, Li YX, Yang RH, Yuan Q. Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sens. 2019;4(8):2124–30.

Article  CAS  PubMed  Google Scholar 

Moon J, Awano M, Takai H, Fujishiro Y. Synthesis of nanocrystalline manganese oxide powders: influence of hydrogen peroxide on particle characteristics. J Mater Res. 1999;14(12):4594–601.

Article  CAS  Google Scholar 

Liu SR, Chang CY, Wu SP. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation. Anal Chim Acta. 2014;849:64–9.

Article  CAS  PubMed  Google Scholar 

Garai-Ibabe G, Saa L, Pavlov V. Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors. Analyst. 2014;139(1):280–4.

Article  CAS  PubMed  Google Scholar 

Li YY, Liang HB, Lin BX, Yu Y, Wang YM, Zhang L, Cao YJ, Guo ML. A ratiometric fluorescence strategy based on inner filter effect for Cu2+-mediated detection of acetylcholinesterase. Microchim Acta. 2021;188(11):385.

Article  CAS  Google Scholar 

Yang JL, Song NZ, Lv XJ, Jia Q. UV-light-induced synthesis of PEI-CuNCs based on Cu2+-quenched fluorescence turn-on assay for sensitive detection of biothiols, acetylcholinesterase activity and inhibitor. Sensor Actuat B Chem. 2018;259:226–32.

Article  CAS  Google Scholar 

Yao M, Nie HL, Yao WX, Yang XP, Zhang GW. A sensitive and selective fluorescent probe for acetylcholinesterase: synthesis, performance, mechanism and application. Arabian J Chem. 2022;15(7):103929.

Article  CAS  Google Scholar 

Zhao C, Zhou FY, Lu K, Yang SK, Tan BJ, Sun WL, Shangguan LA, Wang HY, Liu Y. Near-infrared fluorescent probe for in vivo monitoring acetylcholinesterase activity. Sensor Actuat B Chem. 2022;360:131647.

Article  CAS  Google Scholar 

Comments (0)

No login
gif