Identification and characterization of chiral vitamin C using ion mobility and theoretical calculation

Yin X, Chen KW, Cheng H, Chen X, Feng S, Song YD, et al. Chemical stability of ascorbic acid integrated into commercial products: a review on bioactivity and delivery technology. Antioxidants. 2022;11(1): 153. https://doi.org/10.3390/antiox11010153.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv. 2021;28(1):445–53. https://doi.org/10.1080/10717544.2021.1886377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De la Fuente M, Sánchez C, Vallejo C, Díaz-Del Cerro E, Arnalich F, Hernanz A. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp Gerontol. 2020;142: 111118. https://doi.org/10.1016/j.exger.2020.111118.

Article  CAS  PubMed  Google Scholar 

Sun YP, Zhu BQ, Sievers RE, Norkus EP, Parmley WW, Deedwania PC. Effects of antioxidant vitamins C and E on atherosclerosis in lipid-fed rabbits. Cardiology. 1998;89(3):189–94. https://doi.org/10.1159/000006786.

Article  CAS  PubMed  Google Scholar 

Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4): 339. https://doi.org/10.3390/nu9040339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Heerden C, Cheng DR, McNab S, Burgess R, Russell A, Wang YC, et al. Scurvy and vitamin C deficiency in an Australian tertiary children’s hospital. J Paediatr Child Health. 2024;60(9):409–14. https://doi.org/10.1111/jpc.16594.

Article  PubMed  PubMed Central  Google Scholar 

Praveen D, Puvvada RC, Aanandhi MV. Association of vitamin C status in diabetes mellitus: prevalence and predictors of vitamin C deficiency. Futur J Pharm Sci. 2020;6(1):30. https://doi.org/10.1186/s43094-020-00040-2.

Article  Google Scholar 

Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11): 1211. https://doi.org/10.3390/nu9111211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spínola V, Mendes B, Câmara JS, Castilho PC. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal Bioanal Chem. 2012;403(4):1049–58. https://doi.org/10.1007/s00216-011-5668-x.

Article  CAS  PubMed  Google Scholar 

Lykkesfeldt J, Carr AC. Vitamin C. Adv Nutr. 2024;15(1):100155. https://doi.org/10.1016/j.advnut.2023.100155.

Article  CAS  PubMed  Google Scholar 

Goldman HM, Gould BS, Munro HN. The antiscorbutic action of L-ascorbic acid and D-isoascorbic acid (erythorbic acid) in the guinea pig. Am J Clin Nutr. 1981;34(1):24–33. https://doi.org/10.1093/ajcn/34.1.24.

Article  CAS  PubMed  Google Scholar 

Neto JFS, Khan SD, de Azevedo CA, Neto AGD, Torres AG, Azevedo EPP. Photostability of vitamin C in industrialized fruit juices and isomers determination by HPLC-DAD. J Chromatogr Open. 2023;4: 100103. https://doi.org/10.1016/j.jcoa.2023.100103.

Article  Google Scholar 

Barros A, Silva AP, Gonçalves B, Nunes FM. A fast, simple, and reliable hydrophilic interaction liquid chromatography method for the determination of ascorbic and isoascorbic acids. Anal Bioanal Chem. 2010;396(5):1863–75. https://doi.org/10.1007/s00216-009-3414-4.

Article  CAS  PubMed  Google Scholar 

Louisi AP, Pascalidou S. Optimal conditions for the simultaneous ion-pairing HPLC determination of L-ascorbic, dehydro-L-ascorbic, D-ascorbic, and uric acids with on-line ultraviolet absorbance and electrochemical detection. Anal Biochem. 1998;263(2):176–82. https://doi.org/10.1006/abio.1998.2773.

Article  Google Scholar 

Fenoll J, Martinez A, Hellin P, Flores P. Simultaneous determination of ascorbic and dehydroascorbic acids in vegetables and fruits by liquid chromatography with tandem-mass spectrometry. Food Chem. 2011;127(1):340–4. https://doi.org/10.1016/j.foodchem.2010.12.140.

Article  CAS  Google Scholar 

Pizzo JS, Cruz VHM, Rodrigues CA, Manin LP, Visentainer L, Santos OO, et al. Rapid determination of L-ascorbic acid content in vitamin C serums by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int J Cosmetic Sci. 2022;44(1):131–41. https://doi.org/10.1111/ics.12762.

Article  CAS  Google Scholar 

Decroo C, Colson E, Lemaur V, Caulier G, De Winter J, Cabrera-Barjas G, et al. Ion mobility mass spectrometry of saponin ions. Rapid Commun Mass Spectrom. 2019;33:22–33. https://doi.org/10.1002/rcm.8193.

Article  CAS  PubMed  Google Scholar 

Ross DH, Bhotika H, Zheng XY, Smith RD, Burnum-Johnson KE, Bilbao A. Computational tools and algorithms for ion mobility spectrometry-mass spectrometry. Proteomics. 2024;24(12–13): 2200436. https://doi.org/10.1002/pmic.202200436.

Article  CAS  Google Scholar 

Wu Q, Wang JY, Han DQ, Yao ZP. Recent advances in differentiation of isomers by ion mobility mass spectrometry. Trac-Trends Anal Chem. 2020;124: 115801. https://doi.org/10.1016/j.trac.2019.115801.

Article  CAS  Google Scholar 

Campbell JL, Kafle A, Bowman Z, Le Blanc JCY, Liu C, Hopkins WS. Separating chiral isomers of amphetamine and methamphetamine using chemical derivatization and differential mobility spectrometry. Anal Sci Adv. 2020;1(4):233–44. https://doi.org/10.1002/ansa.202000066.

Article  PubMed  PubMed Central  Google Scholar 

Rister AL, Dodds ED. Ion Mobility Spectrometry and Tandem Mass Spectrometry Analysis of Estradiol Glucuronide Isomers. J Am Soc Mass Spectrom. 2019;30(10):2037–40. https://doi.org/10.1007/s13361-019-02272-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aboul-Enein HY, Efstatiade MD, Baiulescu GE. Cyclodextrins as chiral selectors in capillary electrophoresis: A comparative study for the enantiomeric separation of some beta-agonists. Electrophoresis. 1999;20(13):2686–90. https://doi.org/10.1002/(sici)1522-2683(19990901)20:13.

Article  CAS  PubMed  Google Scholar 

Loftsson T, Saokham P, Couto ARS. Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions. Int J Pharm. 2019;560:228–34. https://doi.org/10.1016/j.ijpharm.2019.02.004.

Article  CAS  PubMed  Google Scholar 

Wang HH, Wu FL, Xu FX, Liu YY, Ding CF. Identification of Bi-2-naphthol and Its Phosphate Derivatives Complexed with Cyclodextrin and Metal Ions Using Trapped Ion Mobility Spectrometry. Anal Chem. 2021;93(45):15096–104. https://doi.org/10.1021/acs.analchem.1c03378.

Article  CAS  PubMed  Google Scholar 

Angelova SE, Nikolova VK, Dudev TM. Determinants of the host-guest interactions between α-, β- and γ-cyclodextrins and group IA, IIA and IIIA metal cations: a DFT/PCM study. Phys Chem Phys. 2017;19(23):15129–36. https://doi.org/10.1039/c7cp01253e.

Article  CAS  Google Scholar 

Shrivastav V, Nahin M, Hogan CJ, Larriba-Andaluz C. Benchmark Comparison for a Multi-Processing Ion Mobility Calculator in the Free Molecular Regime. J Am Soc Mass Spectrom. 2017;28(8):1540–51. https://doi.org/10.1007/s13361-017-1661-8.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif