Yin X, Chen KW, Cheng H, Chen X, Feng S, Song YD, et al. Chemical stability of ascorbic acid integrated into commercial products: a review on bioactivity and delivery technology. Antioxidants. 2022;11(1): 153. https://doi.org/10.3390/antiox11010153.
Article CAS PubMed PubMed Central Google Scholar
Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv. 2021;28(1):445–53. https://doi.org/10.1080/10717544.2021.1886377.
Article CAS PubMed PubMed Central Google Scholar
De la Fuente M, Sánchez C, Vallejo C, Díaz-Del Cerro E, Arnalich F, Hernanz A. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp Gerontol. 2020;142: 111118. https://doi.org/10.1016/j.exger.2020.111118.
Article CAS PubMed Google Scholar
Sun YP, Zhu BQ, Sievers RE, Norkus EP, Parmley WW, Deedwania PC. Effects of antioxidant vitamins C and E on atherosclerosis in lipid-fed rabbits. Cardiology. 1998;89(3):189–94. https://doi.org/10.1159/000006786.
Article CAS PubMed Google Scholar
Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4): 339. https://doi.org/10.3390/nu9040339.
Article CAS PubMed PubMed Central Google Scholar
van Heerden C, Cheng DR, McNab S, Burgess R, Russell A, Wang YC, et al. Scurvy and vitamin C deficiency in an Australian tertiary children’s hospital. J Paediatr Child Health. 2024;60(9):409–14. https://doi.org/10.1111/jpc.16594.
Article PubMed PubMed Central Google Scholar
Praveen D, Puvvada RC, Aanandhi MV. Association of vitamin C status in diabetes mellitus: prevalence and predictors of vitamin C deficiency. Futur J Pharm Sci. 2020;6(1):30. https://doi.org/10.1186/s43094-020-00040-2.
Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11): 1211. https://doi.org/10.3390/nu9111211.
Article CAS PubMed PubMed Central Google Scholar
Spínola V, Mendes B, Câmara JS, Castilho PC. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal Bioanal Chem. 2012;403(4):1049–58. https://doi.org/10.1007/s00216-011-5668-x.
Article CAS PubMed Google Scholar
Lykkesfeldt J, Carr AC. Vitamin C. Adv Nutr. 2024;15(1):100155. https://doi.org/10.1016/j.advnut.2023.100155.
Article CAS PubMed Google Scholar
Goldman HM, Gould BS, Munro HN. The antiscorbutic action of L-ascorbic acid and D-isoascorbic acid (erythorbic acid) in the guinea pig. Am J Clin Nutr. 1981;34(1):24–33. https://doi.org/10.1093/ajcn/34.1.24.
Article CAS PubMed Google Scholar
Neto JFS, Khan SD, de Azevedo CA, Neto AGD, Torres AG, Azevedo EPP. Photostability of vitamin C in industrialized fruit juices and isomers determination by HPLC-DAD. J Chromatogr Open. 2023;4: 100103. https://doi.org/10.1016/j.jcoa.2023.100103.
Barros A, Silva AP, Gonçalves B, Nunes FM. A fast, simple, and reliable hydrophilic interaction liquid chromatography method for the determination of ascorbic and isoascorbic acids. Anal Bioanal Chem. 2010;396(5):1863–75. https://doi.org/10.1007/s00216-009-3414-4.
Article CAS PubMed Google Scholar
Louisi AP, Pascalidou S. Optimal conditions for the simultaneous ion-pairing HPLC determination of L-ascorbic, dehydro-L-ascorbic, D-ascorbic, and uric acids with on-line ultraviolet absorbance and electrochemical detection. Anal Biochem. 1998;263(2):176–82. https://doi.org/10.1006/abio.1998.2773.
Fenoll J, Martinez A, Hellin P, Flores P. Simultaneous determination of ascorbic and dehydroascorbic acids in vegetables and fruits by liquid chromatography with tandem-mass spectrometry. Food Chem. 2011;127(1):340–4. https://doi.org/10.1016/j.foodchem.2010.12.140.
Pizzo JS, Cruz VHM, Rodrigues CA, Manin LP, Visentainer L, Santos OO, et al. Rapid determination of L-ascorbic acid content in vitamin C serums by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int J Cosmetic Sci. 2022;44(1):131–41. https://doi.org/10.1111/ics.12762.
Decroo C, Colson E, Lemaur V, Caulier G, De Winter J, Cabrera-Barjas G, et al. Ion mobility mass spectrometry of saponin ions. Rapid Commun Mass Spectrom. 2019;33:22–33. https://doi.org/10.1002/rcm.8193.
Article CAS PubMed Google Scholar
Ross DH, Bhotika H, Zheng XY, Smith RD, Burnum-Johnson KE, Bilbao A. Computational tools and algorithms for ion mobility spectrometry-mass spectrometry. Proteomics. 2024;24(12–13): 2200436. https://doi.org/10.1002/pmic.202200436.
Wu Q, Wang JY, Han DQ, Yao ZP. Recent advances in differentiation of isomers by ion mobility mass spectrometry. Trac-Trends Anal Chem. 2020;124: 115801. https://doi.org/10.1016/j.trac.2019.115801.
Campbell JL, Kafle A, Bowman Z, Le Blanc JCY, Liu C, Hopkins WS. Separating chiral isomers of amphetamine and methamphetamine using chemical derivatization and differential mobility spectrometry. Anal Sci Adv. 2020;1(4):233–44. https://doi.org/10.1002/ansa.202000066.
Article PubMed PubMed Central Google Scholar
Rister AL, Dodds ED. Ion Mobility Spectrometry and Tandem Mass Spectrometry Analysis of Estradiol Glucuronide Isomers. J Am Soc Mass Spectrom. 2019;30(10):2037–40. https://doi.org/10.1007/s13361-019-02272-w.
Article CAS PubMed PubMed Central Google Scholar
Aboul-Enein HY, Efstatiade MD, Baiulescu GE. Cyclodextrins as chiral selectors in capillary electrophoresis: A comparative study for the enantiomeric separation of some beta-agonists. Electrophoresis. 1999;20(13):2686–90. https://doi.org/10.1002/(sici)1522-2683(19990901)20:13.
Article CAS PubMed Google Scholar
Loftsson T, Saokham P, Couto ARS. Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions. Int J Pharm. 2019;560:228–34. https://doi.org/10.1016/j.ijpharm.2019.02.004.
Article CAS PubMed Google Scholar
Wang HH, Wu FL, Xu FX, Liu YY, Ding CF. Identification of Bi-2-naphthol and Its Phosphate Derivatives Complexed with Cyclodextrin and Metal Ions Using Trapped Ion Mobility Spectrometry. Anal Chem. 2021;93(45):15096–104. https://doi.org/10.1021/acs.analchem.1c03378.
Article CAS PubMed Google Scholar
Angelova SE, Nikolova VK, Dudev TM. Determinants of the host-guest interactions between α-, β- and γ-cyclodextrins and group IA, IIA and IIIA metal cations: a DFT/PCM study. Phys Chem Phys. 2017;19(23):15129–36. https://doi.org/10.1039/c7cp01253e.
Shrivastav V, Nahin M, Hogan CJ, Larriba-Andaluz C. Benchmark Comparison for a Multi-Processing Ion Mobility Calculator in the Free Molecular Regime. J Am Soc Mass Spectrom. 2017;28(8):1540–51. https://doi.org/10.1007/s13361-017-1661-8.
Comments (0)