Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res. 2010;51(10):2863–95.
Article PubMed PubMed Central Google Scholar
Wanders RJA, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment. J Lipid Atheroscler. 2020;9(3):313.
Article CAS PubMed PubMed Central Google Scholar
Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, et al. The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Aspects Med. 2011;32:223–33.
Article CAS PubMed Google Scholar
Houten SM, Wanders RJA, Ranea-Robles P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis. 2020;1866(5):165720.
McCoin CS, Knotts TA, Adams SH. Acylcarnitines—old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015;11(10):617–25.
Article PubMed PubMed Central Google Scholar
Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dise. 2016;7(5):e2226-e.
Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017;25(1):43–56.
Article CAS PubMed Google Scholar
Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines Diabetes. 2013;62(1):1–8.
Article CAS PubMed Google Scholar
Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FGS, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2012;18(9):1695–700.
Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, et al. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep. 2017;7(1):17528.
Article PubMed PubMed Central Google Scholar
Huo Z, Yu L, Yang J, Zhu Y, Bennett DA, Zhao J. Brain and blood metabolome for Alzheimer’s dementia: findings from a targeted metabolomics analysis. Neurobiol Aging. 2020;86:123–33.
Article CAS PubMed Google Scholar
Chen Y, Li C, Liu L, Guo F, Li S, Huang L, et al. Serum metabonomics of NAFLD plus T2DM based on liquid chromatography–mass spectrometry. Clin Biochem. 2016;49(13–14):962–6.
Article CAS PubMed Google Scholar
Ni Y, Xie G, Jia W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014;13(9):3857–70.
Article CAS PubMed Google Scholar
Kim D, Cho E, Yu K-S, Jang I-J, Yoon J-H, Park T, et al. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers. 2019;11(10):1497.
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, et al. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev. 2022;74(3):506–51.
Article CAS PubMed Google Scholar
Zhang J, Chen Q, Zhang L, Shi B, Yu M, Huang Q, et al. Simultaneously quantifying hundreds of acylcarnitines in multiple biological matrices within ten minutes using ultrahigh-performance liquid-chromatography and tandem mass spectrometry. J Pharm Anal. 2024;14(1):140–8.
Yan X, Markey SP, Marupaka R, Dong Q, Cooper BT, Mirokhin YA, et al. Mass spectral library of acylcarnitines derived from human urine. Anal Chem. 2020;92(9):6521–8.
Article CAS PubMed PubMed Central Google Scholar
Pasquali M, Longo N. Newborn screening and inborn errors of metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):1–2.
Yu D, Zhou L, Xuan Q, Wang L, Zhao X, Lu X, et al. Strategy for comprehensive identification of acylcarnitines based on liquid chromatography–high-resolution mass spectrometry. Anal Chem. 2018;90(9):5712–8.
Article CAS PubMed Google Scholar
Teav T, Gallart-Ayala H, van der Velpen V, Mehl F, Henry H, Ivanisevic J. Merged targeted quantification and untargeted profiling for comprehensive assessment of acylcarnitine and amino acid metabolism. Anal Chem. 2019;91(18):11757–69.
Article CAS PubMed Google Scholar
Minkler PE, Stoll MSK, Ingalls ST, Kerner J, Hoppel CL. Validated method for the quantification of free and total carnitine, butyrobetaine, and acylcarnitines in biological samples. Anal Chem. 2015;87(17):8994–9001.
Article CAS PubMed Google Scholar
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, et al. Ion mobility mass spectrometry for the separation and characterization of small molecules. Anal Chem. 2023;95(1):134–51.
Article CAS PubMed Google Scholar
Wu Q, Wang J-Y, Han D-Q, Yao Z-P. Recent advances in differentiation of isomers by ion mobility mass spectrometry. TrAC, Trends Anal Chem. 2020;124:156–69.
Dodds JN, Baker ES. Improving the speed and selectivity of newborn screening using ion mobility spectrometry–mass spectrometry. Anal Chem. 2021;93(51):17094–102.
Article CAS PubMed PubMed Central Google Scholar
Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C. 2006;193(3):95–103.
Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Selective and accurate C5 acylcarnitine quantitation by UHPLC–MS/MS: distinguishing true isovaleric acidemia from pivalate derived interference. J Chromatogr B. 2017;1061–1062:128–33.
Bonney JR, Prentice BM. Perspective on emerging mass spectrometry technologies for comprehensive lipid structural elucidation. Anal Chem. 2021;93(16):6311–22.
Article CAS PubMed PubMed Central Google Scholar
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Anal Bioanal Chem. 2021;413(24):5927–48.
Article CAS PubMed PubMed Central Google Scholar
Zhao X, Xia Y. Characterization of fatty acyl modifications in phosphatidylcholines and lysophosphatidylcholines via radical-directed dissociation. J Am Soc Mass Spectrom. 2021;32(2):560–8.
Article CAS PubMed Google Scholar
Lin Q, Li P, Jian R, Xia Y. Localization of intrachain modifications in bacterial lipids via radical-directed dissociation. J Am Soc Mass Spectrom. 2022;33(4):714–21.
Article CAS PubMed Google Scholar
Zhao J, Qiao L, Xia Y. In-depth characterization of sphingoid bases via radical-directed dissociation tandem mass spectrometry. J Am Soc Mass Spectrom. 2023;34(10):2394–402.
Article CAS PubMed Google Scholar
Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst. 2022;147(10):2115–23.
Article CAS PubMed Google Scholar
Maeda Y, Ito T, Suzuki A, Kurono Y, Ueta A, Yokoi K, et al. Simultaneous quantification of acylcarnitine isomers containing dicarboxylic acylcarnitines in human serum and urine by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Sp. 2007;21(5):799–806.
Lin Q, Jian R, Wang S, Xia Y. Characterization of oxidized glycerophosphoethanolamines via radical-directed dissociation tandem mass spectrometry and the Paterno-Buchi derivatization. Anal Chem. 2023;95(25):9422–7.
Comments (0)