In-depth characterization of acylcarnitines: utilizing nitroxide radical–directed dissociation in tandem mass spectrometry

Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res. 2010;51(10):2863–95.

Article  PubMed  PubMed Central  Google Scholar 

Wanders RJA, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment. J Lipid Atheroscler. 2020;9(3):313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, et al. The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Aspects Med. 2011;32:223–33.

Article  CAS  PubMed  Google Scholar 

Houten SM, Wanders RJA, Ranea-Robles P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis. 2020;1866(5):165720.

McCoin CS, Knotts TA, Adams SH. Acylcarnitines—old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015;11(10):617–25.

Article  PubMed  PubMed Central  Google Scholar 

Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dise. 2016;7(5):e2226-e.

Article  Google Scholar 

Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017;25(1):43–56.

Article  CAS  PubMed  Google Scholar 

Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines Diabetes. 2013;62(1):1–8.

Article  CAS  PubMed  Google Scholar 

Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FGS, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2012;18(9):1695–700.

Article  Google Scholar 

Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, et al. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep. 2017;7(1):17528.

Article  PubMed  PubMed Central  Google Scholar 

Huo Z, Yu L, Yang J, Zhu Y, Bennett DA, Zhao J. Brain and blood metabolome for Alzheimer’s dementia: findings from a targeted metabolomics analysis. Neurobiol Aging. 2020;86:123–33.

Article  CAS  PubMed  Google Scholar 

Chen Y, Li C, Liu L, Guo F, Li S, Huang L, et al. Serum metabonomics of NAFLD plus T2DM based on liquid chromatography–mass spectrometry. Clin Biochem. 2016;49(13–14):962–6.

Article  CAS  PubMed  Google Scholar 

Ni Y, Xie G, Jia W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014;13(9):3857–70.

Article  CAS  PubMed  Google Scholar 

Kim D, Cho E, Yu K-S, Jang I-J, Yoon J-H, Park T, et al. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers. 2019;11(10):1497.

Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, et al. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev. 2022;74(3):506–51.

Article  CAS  PubMed  Google Scholar 

Zhang J, Chen Q, Zhang L, Shi B, Yu M, Huang Q, et al. Simultaneously quantifying hundreds of acylcarnitines in multiple biological matrices within ten minutes using ultrahigh-performance liquid-chromatography and tandem mass spectrometry. J Pharm Anal. 2024;14(1):140–8.

Article  PubMed  Google Scholar 

Yan X, Markey SP, Marupaka R, Dong Q, Cooper BT, Mirokhin YA, et al. Mass spectral library of acylcarnitines derived from human urine. Anal Chem. 2020;92(9):6521–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasquali M, Longo N. Newborn screening and inborn errors of metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):1–2.

Article  Google Scholar 

Yu D, Zhou L, Xuan Q, Wang L, Zhao X, Lu X, et al. Strategy for comprehensive identification of acylcarnitines based on liquid chromatography–high-resolution mass spectrometry. Anal Chem. 2018;90(9):5712–8.

Article  CAS  PubMed  Google Scholar 

Teav T, Gallart-Ayala H, van der Velpen V, Mehl F, Henry H, Ivanisevic J. Merged targeted quantification and untargeted profiling for comprehensive assessment of acylcarnitine and amino acid metabolism. Anal Chem. 2019;91(18):11757–69.

Article  CAS  PubMed  Google Scholar 

Minkler PE, Stoll MSK, Ingalls ST, Kerner J, Hoppel CL. Validated method for the quantification of free and total carnitine, butyrobetaine, and acylcarnitines in biological samples. Anal Chem. 2015;87(17):8994–9001.

Article  CAS  PubMed  Google Scholar 

Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, et al. Ion mobility mass spectrometry for the separation and characterization of small molecules. Anal Chem. 2023;95(1):134–51.

Article  CAS  PubMed  Google Scholar 

Wu Q, Wang J-Y, Han D-Q, Yao Z-P. Recent advances in differentiation of isomers by ion mobility mass spectrometry. TrAC, Trends Anal Chem. 2020;124:156–69.

Dodds JN, Baker ES. Improving the speed and selectivity of newborn screening using ion mobility spectrometry–mass spectrometry. Anal Chem. 2021;93(51):17094–102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C. 2006;193(3):95–103.

Article  Google Scholar 

Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Selective and accurate C5 acylcarnitine quantitation by UHPLC–MS/MS: distinguishing true isovaleric acidemia from pivalate derived interference. J Chromatogr B. 2017;1061–1062:128–33.

Article  Google Scholar 

Bonney JR, Prentice BM. Perspective on emerging mass spectrometry technologies for comprehensive lipid structural elucidation. Anal Chem. 2021;93(16):6311–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Anal Bioanal Chem. 2021;413(24):5927–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X, Xia Y. Characterization of fatty acyl modifications in phosphatidylcholines and lysophosphatidylcholines via radical-directed dissociation. J Am Soc Mass Spectrom. 2021;32(2):560–8.

Article  CAS  PubMed  Google Scholar 

Lin Q, Li P, Jian R, Xia Y. Localization of intrachain modifications in bacterial lipids via radical-directed dissociation. J Am Soc Mass Spectrom. 2022;33(4):714–21.

Article  CAS  PubMed  Google Scholar 

Zhao J, Qiao L, Xia Y. In-depth characterization of sphingoid bases via radical-directed dissociation tandem mass spectrometry. J Am Soc Mass Spectrom. 2023;34(10):2394–402.

Article  CAS  PubMed  Google Scholar 

Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst. 2022;147(10):2115–23.

Article  CAS  PubMed  Google Scholar 

Maeda Y, Ito T, Suzuki A, Kurono Y, Ueta A, Yokoi K, et al. Simultaneous quantification of acylcarnitine isomers containing dicarboxylic acylcarnitines in human serum and urine by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Sp. 2007;21(5):799–806.

Article  CAS  Google Scholar 

Lin Q, Jian R, Wang S, Xia Y. Characterization of oxidized glycerophosphoethanolamines via radical-directed dissociation tandem mass spectrometry and the Paterno-Buchi derivatization. Anal Chem. 2023;95(25):9422–7.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif