Baird C, Cann M. Chapter 13: Pesticides. Part IV: Toxic organic compounds. In: Environmental chemistry. 5th ed. W. H. Freeman; 2012. p. 575–622.
Jurado A, Fernandes M, Videira R, Peixoto F, Vicente J. Herbicides: the face and the reverse of the coin. An in vitro approach to the toxicity of herbicides in non-target organisms. In: Herbicides and environment. InTech; 2011:3–44. https://doi.org/10.5772/12976.
Cabrera Mesa A, Spokas KA. 5 Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. Herbicides and Environment. InTech. 2011:315–340. https://doi.org/10.5772/13620.
Gámiz B, Hall K, Spokas KA, Cox L. Understanding activation effects on low-temperature biochar for optimization of herbicide sorption. Agronomy. 2019;9(10):588. https://doi.org/10.3390/agronomy9100588.
Haskis P, Mantzos N, Hela D, Patakioutas G, Konstantinou I. Effect of biochar on the mobility and photodegradation of metribuzin and metabolites in soil-biochar thin-layer chromatography plates. Int J Environ Anal Chem. 2019;99(4):310–27. https://doi.org/10.1080/03067319.2019.1597863.
Serelis K, Mantzos N, Meintani D, Konstantinou I. The effect of biochar, hydrochar particles and dissolved organic matter on the photodegradation of metribuzin herbicide in aquatic media. J Environ Chem Eng. 2021;9(1): 105027. https://doi.org/10.1016/j.jece.2021.105027.
Europa. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC. Official Journal of the European Union, 1107/2009 Oct 21, 2022 p. 1–50.
European Chemicals Agency (ECHA). https://echa.europa.eu/es/home. Accessed 22 Jun 2023.
Europe. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union, 396/2005 2005 p. 1–16.
Tadeo JL, Sánchez-Brunete C, Albero B, García-Valcárcel AI. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J Chromatogr A. 2010;1217(16):2415–40. https://doi.org/10.1016/j.chroma.2009.11.066.
Article CAS PubMed Google Scholar
Yan R, Ju F, Wang H, Sun C, Zhang H, Shao M, et al. Determination of sulfonylurea herbicides in soil by ionic liquid-based ultrasonic-assisted extraction high-performance liquid chromatography. Anal Methods. 2014;6(24):9561–6. https://doi.org/10.1039/C4AY01876A.
Tolcha T, Gemechu T, Al-Hamimi S, Megersa N, Turner C. Multivariate optimization of a combined static and dynamic supercritical fluid extraction method for trace analysis of pesticides pollutants in organic honey. J Sep Sci. 2021;44(8):1716–26. https://doi.org/10.1002/jssc.202100047.
Article CAS PubMed Google Scholar
Shah J, Rasul · M, Behisht J·, Farhat-Un- A·, Shehzad N, Shah J, et al. Quantification of triazine herbicides in soil by microwave-assisted extraction and high-performance liquid chromatography. Environ Monit Assess. 2011;178:111–9. https://doi.org/10.1007/s10661-010-1676-0.
Yadeta GL. Analysis of multiclass pesticide residues in vegetables using microwave assisted extraction followed by high performance liquid chromatography with ultraviolet detection. Int J Sci Res Eng Trends. 2020;6(3):2395–566.
Albero B, Sánchez-Brunete C, Tadeo JL. Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography. J Agric Food Chem. 2003;51:6915–21. https://doi.org/10.1021/jf030414m.
Article CAS PubMed Google Scholar
Rodríguez-González N, González-Castro MJ, Beceiro-González E, Muniategui-Lorenzo S. Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in mussels. Food Chem. 2015;15(173):391–6. https://doi.org/10.1016/j.foodchem.2014.09.153.
Wu Q, Li Z, Wu C, Wang C, Wang Z. Application of ultrasound-assisted emulsification microextraction for the determination of triazine herbicides in soil samples by high performance liquid chromatography. Microchim Acta. 2010;170(1–2):59–65. https://doi.org/10.1007/s00604-010-0385-2.
da Costa Marinho MI, Costa AIG, Vieira NM, Paiva MCG, de Freitas FCL, da Silva AA. Validation and application of a QuEChERS based method for estimation of half-life of imidazolinone herbicides in soils by LC-ESI-MS/MS. Ecotoxicol Environ Saf. 2019;15(167):212–7. https://doi.org/10.1016/j.ecoenv.2018.09.075.
Martins GL, Friggi CA, Prestes OD, Vicari MC, Friggi DA, Adaime MB, et al. Simultaneous LC-MS/MS determination of imidazolinone herbicides together with other multiclass pesticide residues in soil. Clean (Weinh). 2014;42(10):1441–9. https://doi.org/10.1002/clen.201300140.
United States Environmental Protection Agency (EPA). SW-846 Test Method 3546: Microwave Extraction. 2007 Feb. https://www.epa.gov/sites/default/files/2015-12/documents/3546.pdf of subordinate document. Accessed 22 Jun 2023.
Pawliszyn J. Comprehensive sampling and sample preparation. Vol. 1. 1st ed. Oxford: Elservier; 2012.
Wojnowski W, Tobiszewski M, Pena-Pereira F, Psillakis E. AGREEPrep – analytical greenness metric for sample preparation. TrAC Trends Anal Chem. 2022;1(149): 116553.
Comments (0)