Takizawa H (2015) Impacts of particulate air pollution on asthma: current understanding and future perspectives. Recent Pat Inflamm Allergy Drug Discov 9:128–135. https://doi.org/10.2174/1872213x09666150623110714
Article CAS PubMed Google Scholar
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH (2022) Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 31. https://doi.org/10.1183/16000617.0112-2021
Jacquemin B, Kauffmann F, Pin I, Le Moual N, Bousquet J, Gormand F, Just J, Nadif R, Pison C, Vervloet D et al (2012) Air pollution and asthma control in the epidemiological study on the genetics and environment of asthma. J Epidemiol Community Health 66:796–802. https://doi.org/10.1136/jech.2010.130229
Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK (2020) IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy 75:2254–2266. https://doi.org/10.1111/all.14181
Article CAS PubMed Google Scholar
Brauer M, Hoek G, Smit HA, de Jongste JC, Gerritsen J, Postma DS, Kerkhof M, Brunekreef B (2007) Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 29:879–888. https://doi.org/10.1183/09031936.00083406
Article CAS PubMed Google Scholar
McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, Kunzli N, Gauderman J, Avol E, Thomas D et al (2006) Traffic, susceptibility, and childhood asthma. Environ Health Perspect 114:766–772. https://doi.org/10.1289/ehp.8594
Article CAS PubMed PubMed Central Google Scholar
Jung CR, Chen WT, Tang YH, Hwang BF (2019) Fine particulate matter exposure during pregnancy and infancy and incident asthma. J Allergy Clin Immunol 143(2254–2262):e2255. https://doi.org/10.1016/j.jaci.2019.03.024
Brandt EB, Biagini Myers JM, Acciani TH, Ryan PH, Sivaprasad U, Ruff B, LeMasters GK, Bernstein DI, Lockey JE, LeCras TD et al (2015) Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. J Allergy Clin Immunol 136(295–303):e297. https://doi.org/10.1016/j.jaci.2014.11.043
Sewell GW, Kaser A (2022) Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J Crohns Colitis 16: ii3-ii19. https://doi.org/10.1093/ecco-jcc/jjac034
Chan TC, Hawkes JE, Krueger JG (2018) Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther Adv Chronic Dis 9:111–119. https://doi.org/10.1177/2040622318759282
Article CAS PubMed PubMed Central Google Scholar
Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G (2021) Role of the IL-23/IL-17 pathway in rheumatic diseases: an overview. Front Immunol 12:637829. https://doi.org/10.3389/fimmu.2021.637829
Article CAS PubMed PubMed Central Google Scholar
Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y et al (2008) IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 178:1023–1032. https://doi.org/10.1164/rccm.200801-086OC
Article CAS PubMed Google Scholar
Alyasin S, Amin R, Fazel A, Karimi MH, Nabavizadeh SH, Esmaeilzadeh H, Babaei M (2017) IL-23 Gene and protein expression in childhood asthma. Iran J Immunol 14:73–80
Zhang X, Chang Li X, Xiao X, Sun R, Tian Z, Wei H (2013) CD4(+)CD62L(+) central memory T cells can be converted to Foxp3(+) T cells. PLoS ONE 8:e77322. https://doi.org/10.1371/journal.pone.0077322
Article CAS PubMed PubMed Central Google Scholar
Sallusto F, Lanzavecchia A (2001) Exploring pathways for memory T cell generation. J Clin Invest 108:805–806. https://doi.org/10.1172/JCI14005
Article CAS PubMed PubMed Central Google Scholar
Haines CJ, Chen Y, Blumenschein WM, Jain R, Chang C, Joyce-Shaikh B, Porth K, Boniface K, Mattson J, Basham B et al (2013) Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep 3:1378–1388. https://doi.org/10.1016/j.celrep.2013.03.035
Article CAS PubMed Google Scholar
Lee HS, Park HW (2022) IL-23 plays a significant role in the augmentation of particulate matter-mediated allergic airway inflammation. J Cell Mol Med 26:4506–4519. https://doi.org/10.1111/jcmm.17475
Article CAS PubMed PubMed Central Google Scholar
Nakajima Y, Chamoto K, Oura T, Honjo T (2021) Critical role of the CD44(low)CD62L(low) CD8(+) T cell subset in restoring antitumor immunity in aged mice. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2103730118
Maroof A (2001) Generation of murine bone-marrow-derived dendritic cells. Methods Mol Med 64:191–198. https://doi.org/10.1385/1-59259-150-7:191
Article CAS PubMed Google Scholar
Basaraba RJ (2008) Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb) 88(Suppl 1):S35-47. https://doi.org/10.1016/S1472-9792(08)70035-0
Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M et al (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126:3279–3295. https://doi.org/10.1172/JCI85664
Article PubMed PubMed Central Google Scholar
Bosnjak B, Kazemi S, Altenburger LM, Mokrovic G, Epstein MM (2019) Th2-T(RMs) maintain life-long allergic memory in experimental asthma in mice. Front Immunol 10:840. https://doi.org/10.3389/fimmu.2019.00840
Article CAS PubMed PubMed Central Google Scholar
Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161. https://doi.org/10.1146/annurev-immunol-032712-095954
Article CAS PubMed Google Scholar
Achakulwisut P, Brauer M, Hystad P, Anenberg SC (2019) Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO(2) pollution: estimates from global datasets. Lancet Planet Health 3:e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4
Fuertes E, Heinrich J (2015) The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization. Allergy 70:1350–1351. https://doi.org/10.1111/all.12611
Article CAS PubMed Google Scholar
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
Article PubMed PubMed Central Google Scholar
Ghio AJ (2008) Mechanism of asthmatic exacerbation by ambient air pollution particles. Expert Rev Respir Med 2:109–118. https://doi.org/10.1586/17476348.2.1.109
Article CAS PubMed Google Scholar
Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B (2016) Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol 90:1541–1553. https://doi.org/10.1007/s00204-016-1736-5
Article CAS PubMed PubMed Central Google Scholar
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T (2018) Insights in particulate matter-induced allergic airway inflammation: focus on the epithelium. Clin Exp Allergy 48:773–786. https://doi.org/10.1111/cea.13178
Acciani TH, Brandt EB, Khurana Hershey GK, Le Cras TD (2013) Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy 43:1406–1418. https://doi.org/10.1111/cea.12200
Article CAS PubMed Google Scholar
Sallusto F, Lanzavecchia A, Araki K, Ahmed R (2010) From vaccines to memory and back. Immunity 33:451–463. https://doi.org/10.1016/j.immuni.2010.10.008
Article CAS PubMed PubMed Central Google Scholar
Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10:838–848. https://doi.org/10.1038/nri2870
Article CAS PubMed Google Scholar
Wang Q, Du J, Zhu J, Yang X, Zhou B (2015) Thymic stromal lymphopoietin signaling in CD4(+) T cells is required for TH2 memory. J Allergy Clin Immunol 135(781–791):e783. https://doi.org/10.1016/j.jaci.2014.09.015
Kitajima M, Kubo M, Ziegler SF, Suzuki H (2020) Critical role of TSLP receptor on CD4 T cells for exacerbation of skin inflammation. J Immunol 205:27–35. https://doi.org/10.4049/jimmunol.1900758
Article CAS PubMed Google Scholar
Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129:437–445. https://doi.org/10.1111/j.1365-2567.2009.03199.x
Comments (0)