Dinda B, Silsarma I, Dinda M, Rudrapaula P (2015) Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol 161:255–278. https://doi.org/10.1016/j.jep.2014.12.027
Article CAS PubMed Google Scholar
Kamkaen N, Wilkinson JM, Cavanagh HM (2006) Cytotoxic effect of four Thai edible plants on mammalian cell proliferation. Thai Pharma Health Sci J 1:189–195
Luitel H, Rajbhandari M, Kalauni SK, Awale S, Masuda K, Gewali MB (2010) Chemical constituents from Oroxylum indicum (L.) Kurz of Nepalese origin. Scientific World 8:66–68. https://doi.org/10.3126/sw.v8i8.3852
Lawania RD, Mishra A, Gupta R (2010) Oroxylum indicum: a review Pharmacognosy J 2:304–310. https://doi.org/10.1016/S0975-3575(10)80121-X
Jagetia GC (2021) A review on the medicinal and pharmacological properties of traditional ethnomedicinal plant sonopath, Oroxylum indicum. Sinusitis 5:71–89. https://doi.org/10.3390/sinusitis5010009
Hildmann C, Riester D, Schwienhors A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Microbiol Biotechnol 75:487–497. https://doi.org/10.1007/s00253-007-0911-2
Colussi C, IIIi B, Spallotta J, Farsetti A, Grasselli A, Mai A, Capogrossi M, Gaetanoa C, (2010) Histone deacetylase inhibitors: keeping momentum for neuromuscular and cardiovascular diseases treatment. Pharmacol Res 62:3–10. https://doi.org/10.1016/j.phrs.2010.02.014
Article CAS PubMed Google Scholar
Wang F, Wang C, Wang J, Zou Y, Chen X, Liu T, He B (2019) Nɛ-acetyl lysine derivatives with zinc binding groups as novel HDAC inhibitors. R Soc Open Sci 6:190338–219347. https://doi.org/10.1098/rsos.190338
Article CAS PubMed PubMed Central Google Scholar
McLaughlin F, Thangue NBL (2004) Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 68:1139–1144. https://doi.org/10.1016/j.bcp.2004.05.034
Article CAS PubMed Google Scholar
Wang F, Lu W, Zhang T, Dong J, Gao H, Li P, Wang S, Zhang J (2013) Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem 21:6973–6980. https://doi.org/10.1016/j.bmc.2013.09.021
Article CAS PubMed Google Scholar
Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychoph 72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002
Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: What are the cancer relevant targets? Cancer Lett 227:8–21. https://doi.org/10.1016/j.canlet.2008.08.016
De Ruijter AJM, Gennip VAH, Caron HN, Kemp S, Kuilenburg ABPV (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–739. https://doi.org/10.1042/bj20021321
Article PubMed PubMed Central Google Scholar
Zwergel C, Valente S, Jacob C, Mai A (2015) Emerging approaches for histone Deacetylase inhibitor drug discovery. Expert Opin Drug Discov 10:599–613. https://doi.org/10.1517/17460441.2015.1038236
Article CAS PubMed Google Scholar
Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F (2017) Design, synthesis, and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024
Article CAS PubMed Google Scholar
Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. https://doi.org/10.1038/nrd2133
Article CAS PubMed Google Scholar
Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51:1505–1529. https://doi.org/10.1021/jm7011408
Article CAS PubMed Google Scholar
Fishcher A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDACs to treat cognitive disorders. Trends Pharmacol Sci 31:605–617. https://doi.org/10.1016/j.tips.2010.09.003
Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biol Targets Ther 7:47–60. https://doi.org/10.2147/BTT.S29965
Linciano P, Benedetti R, Pinzi L, Russo F, Chianese U, Sorbi C, Altucci L, Rastelli G, Brasili L, Franchini S (2021) Investigation of the effect of different linker chemotypes on the inhibition of histone deacetylases (HDACs). Bioorg Chem 106:104462. https://doi.org/10.1016/j.bioorg.2020.104462
Article CAS PubMed Google Scholar
Abdalla MM (2016) Medicinal significance of naturally occurring cyclopeptides. J Nat Med 70:708–720. https://doi.org/10.1007/s11418-016-1001-5
Article CAS PubMed Google Scholar
Son H, Chang IM, Lee SI, Yang HD (2007) Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755. https://doi.org/10.1016/j.bmcl.2007.06.060
Article CAS PubMed Google Scholar
Kummboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C (2017) Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 26:650–661. https://doi.org/10.1007/s00044-017-1785-1
Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weilanda T, Noor S, Leischner C, Weiss TS, Lauera UM, Bischoff SC, Bitzer M (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985. https://doi.org/10.1016/j.jnutbio.2012.07.001
Article CAS PubMed Google Scholar
Ali RM, Houghton PJ, Raman A, Hoult JRS (1998) Antimicrobial and anti-inflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine 5:375–381. https://doi.org/10.1016/S0944-7113(98)80020-2
Santi MD, Bouzidi C, Gorod NS, Puiatti M, Michel S, Grougnet R, Ortega MG (2019) In vitro biological evaluation and molecular docking studies of natural and semisynthetic flavones from Gardenia oudiepe (Rubiaceae) as tyrosinase inhibitors. Bioorg Chem 82:241–245. https://doi.org/10.1016/j.bioorg.2018.10.034
Article CAS PubMed Google Scholar
Lee YE, Kodama T, Morita H (2023) Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediates, olivetolic acid, and its alkyl-chain derivatives. J Nat Med 77:298–305. https://doi.org/10.1016/j.bioorg.2020.104370
Article CAS PubMed Google Scholar
Babu TH, Manjulatha K, Kumar GS, Hymavathi A, Tiwari AK, Purohit M, Rao JM, Babu KS (2010) Gastroprotective flavonoid constituents from Oroxylum indicum Vent. Bioorg Med Chem Lett 20:117–120. https://doi.org/10.1016/j.bmcl.2009.11.024
Zou XQ, Peng SM, Hu CP, Tan LF, Yuan Q, Deng HW, Li YJ (2010) Synthesis, characterization and vasculoprotective effects of nitric oxide-donating derivatives of chrysin. Bioorg Med Chem 18:3020–3025. https://doi.org/10.1016/j.bmc.2010.03.056
Article CAS PubMed Google Scholar
Babu KS, Babu TH, Srinivas PV, Kishore KH, Murthy USN, Rao JM (2006) Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg Med Chem Lett 16:221–224. https://doi.org/10.1016/j.bmcl.2005.09.009
Somsakeesit L-o, Senawong T, Kumboonma P, Saenglee S, Samankul A, Senawong G, Yenjai C, Phaosiri C (2020) Influence of side-chain changes on histone Deacetylase inhibitory and cytotoxicity activities of curcuminoid derivatives. Bioorg Med Chem Lett 30:127171–127176. https://doi.org/10.1016/j.bmcl.2020.127171
Article CAS PubMed Google Scholar
Asgar MA, Senawong G, Sripa B, Senawong T (2015) Scopoletin potentiates the anti- cancer effects of cisplatin against cholangiocarcinoma cell lines. Bangladesh J Pharmacol 10:69–77. https://doi.org/10.3329/bjp.v10i1.21202
Kattar SD, Surdi LM, Zabierek A, Methot JL, Middleton RE, Hughes B et al (2009) Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI- 1:2) optimization. Bioorg Med Chem Lett 19:1168–1172. https://doi.org/10.1016/j.bmcl.2008.12.083
Article CAS PubMed Google Scholar
Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, Pierce RT, Jung M (2015) HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 36:481–492. https://doi.org/10.1016/j.tips.2015.04.013
Article CAS PubMed Google Scholar
Ganai SA, Sheikh FA, Baba ZA (2021) Plant flavone chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res 35:823–834. https://doi.org/10.1002/ptr.6869
Comments (0)