Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6
Article PubMed PubMed Central Google Scholar
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185. https://doi.org/10.1126/science.1566067
Article CAS PubMed Google Scholar
Ono K, Yamada M (2011) Low-n oligomers as therapeutic targets of Alzheimer’s disease. J Neurochem 117:19–28. https://doi.org/10.1111/j.1471-4159.2011.07187.x
Article CAS PubMed Google Scholar
Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206. https://doi.org/10.1007/s00401-015-1386-3
Article CAS PubMed PubMed Central Google Scholar
Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339. https://doi.org/10.1016/j.cell.2019.09.001
Article CAS PubMed PubMed Central Google Scholar
Hara Y, McKeehan N, Fillit HM (2019) Translating the biology of aging into novel therapeutics for Alzheimer disease. Neurology 92:84–93. https://doi.org/10.1212/WNL.0000000000006745
Article PubMed PubMed Central Google Scholar
Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, Kern S, Ousset PJ, Maruff P, Skoog I, Verhey FRJ, Freund-Levi Y, Tsolaki M, Wallin Å, Olde Rikkert M, Soininen H, Spiru L, Zetterberg H, Blennow K, Scheltens P, Muniz-Terrera G, Visser PJ, Initiative ADN (2019) Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement 15:888–898. https://doi.org/10.1016/j.jalz.2019.04.001
Ngoc Quang D, Hashimoto T, Hitaka Y, Tanaka M, Nukada M, Yamamoto I, Asakawa Y (2003) Thelephantins D-H: five p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 63:919–924. https://doi.org/10.1016/s0031-9422(03)00220-6
Ye YQ, Koshino H, Onose J, Negishi C, Yoshikawa K, Abe N, Takahashi S (2009) Structural revision of thelephantin G by total synthesis and the inhibitory activity against TNF-alpha production. J Org Chem 74:4642–4645. https://doi.org/10.1021/jo900638b
Article CAS PubMed Google Scholar
Quang DN, Hashimoto T, Hitaka Y, Tanaka M, Nukada M, Yamamoto I, Asakawa Y (2004) Thelephantins I-N; p-terphenyl derivatives from the inedible mushroom Hydnellum caeruleum. Phytochemistry 65:1179–1184. https://doi.org/10.1016/j.phytochem.2004.02.018
Article CAS PubMed Google Scholar
Hu L, Gao JM, Liu J (2001) Unusual Poly(phenylacetyloxy)-substituted 1,1′: 4′,1″-terphenyl derivatives from fruiting bodies of the basidiomycete Thelephora ganbajun. Helv Chim Acta 84:3342–3349. https://doi.org/10.1002/1522-2675(20011114)84:11%3c3342::AID-HLCA3342%3e3.0.CO;2-K
Radulović N, Quang DN, Hashimoto T, Nukada M, Asakawa Y (2005) Terrestrins A-G: p-terphenyl derivatives from the inedible mushroom. Phytochemistry 66:1052–1059. https://doi.org/10.1016/j.phytochem.2005.03.008
Article CAS PubMed Google Scholar
Wang SM, Han JJ, Ma K, Jin T, Bao L, Pei YF, Liu HW (2014) New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 98:149–155. https://doi.org/10.1016/j.fitote.2014.07.019
Article CAS PubMed Google Scholar
Quang DN, Hashimoto T, Nukada M, Yamamoto I, Hitaka Y, Tanaka M, Asakawa Y (2003) Thelephantins A, B and C: three benzoyl p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 62:109–113. https://doi.org/10.1016/s0031-9422(02)00403-x
Article CAS PubMed Google Scholar
Tsukamoto S, Macabalang A, Abe T, Hirota H, Ohta T (2002) Thelephorin A: a new radical scavenger from the mushroom Thelephora vialis. Tetrahedron 58:1103–1105. https://doi.org/10.1016/S0040-4020(01)01214-5
N.I.o.A.I. Science, a. Technology, SDBS (https://sdbs.db.aist.go.jp) (accessed 2021.7.28).
Nakabayashi S, Ishikura A, Fujihara K, Hirabayashi S, Koike S, Sasaki H, Ogasawara Y, Koyama K, Kinoshita K (2022) Inhibition of amyloid-β aggregation by p-terphenyls from the mushroom Polyozellus multiplex and their neuroprotective effects. Heterocycles 104:2025–2036. https://doi.org/10.3987/COM-22-14711
Masuda Y, Fujihara K, Hayashi S, Sasaki H, Kino Y, Kamauchi H, Noji M, Satoh JI, Takanami T, Kinoshita K, Koyama K (2021) Inhibition of BACE1 and amyloid-β aggregation by meroterpenoids from the mushroom. J Nat Prod 84:1748–1754. https://doi.org/10.1021/acs.jnatprod.0c01329
Article CAS PubMed Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809
Article CAS PubMed Google Scholar
Villa C, Lavitrano M, Salvatore E, Combi R (2020) Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J Pers Med 10:61. https://doi.org/10.3390/jpm10030061
Article PubMed PubMed Central Google Scholar
Fujihara K, Koike S, Ogasawara Y, Takahashi K, Koyama K, Kinoshita K (2017) Inhibition of amyloid β aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe. Bioorg Med Chem 25:3377–3383. https://doi.org/10.1016/j.bmc.2017.04.023
Article CAS PubMed Google Scholar
Fujihara K, Hashimoto T, Sasaki H, Koyama K, Kinoshita K (2023) Inhibition of Aβ aggregation by naphtho-g-pyrone derivatives from a marine-derived fungus, Aspergillus sp. MPUC239. J Nat Med 77:516–522. https://doi.org/10.1007/s11418-023-01696-9
Article CAS PubMed PubMed Central Google Scholar
Fujihara K, Hashimoto T, Sasaki H, Koyama K, Kinoshita K (2023) Correction: inhibition of Aβ aggregation by naphtho-γ-pyrone derivatives from a marine-derived fungus, Aspergillus sp. MPUC239. J Nat Med 77:624. https://doi.org/10.1007/s11418-023-01708-8
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA (2023) Oxidative stress, the blood-brain barrier and neurodegenerative diseases: the critical beneficial role of dietary antioxidants. Acta Pharm Sin B 13:3988–4024. https://doi.org/10.1016/j.apsb.2023.07.010
Article CAS PubMed PubMed Central Google Scholar
Lin JW, Chen JT, Hong CY, Lin YL, Wang KT, Yao CJ, Lai GM, Chen RM (2012) Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol 14:302–314. https://doi.org/10.1093/neuonc/nor217
Article CAS PubMed PubMed Central Google Scholar
Dutta BJ, Rakshe PS, Maurya N, Chib S, Singh S (2023) Unlocking the therapeutic potential of natural stilbene: exploring pterostilbene as a powerful ally against aging and cognitive decline. Ageing Res Rev 92:102125. https://doi.org/10.1016/j.arr.2023.102125
Article CAS PubMed Google Scholar
Jaeger BN, Parylak SL, Gage FH (2018) Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 61:50–62. https://doi.org/10.1016/j.mam.2017.11.003
Article CAS PubMed Google Scholar
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M (2015) Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and
Comments (0)