Inhibition of amyloid β aggregation and BACE1, and protective effect on SH-SY5Y cells, by p-terphenyl compounds from mushroom Thelephora aurantiotincta

Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

Article  PubMed  PubMed Central  Google Scholar 

Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185. https://doi.org/10.1126/science.1566067

Article  CAS  PubMed  Google Scholar 

Ono K, Yamada M (2011) Low-n oligomers as therapeutic targets of Alzheimer’s disease. J Neurochem 117:19–28. https://doi.org/10.1111/j.1471-4159.2011.07187.x

Article  CAS  PubMed  Google Scholar 

Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206. https://doi.org/10.1007/s00401-015-1386-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339. https://doi.org/10.1016/j.cell.2019.09.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hara Y, McKeehan N, Fillit HM (2019) Translating the biology of aging into novel therapeutics for Alzheimer disease. Neurology 92:84–93. https://doi.org/10.1212/WNL.0000000000006745

Article  PubMed  PubMed Central  Google Scholar 

Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, Kern S, Ousset PJ, Maruff P, Skoog I, Verhey FRJ, Freund-Levi Y, Tsolaki M, Wallin Å, Olde Rikkert M, Soininen H, Spiru L, Zetterberg H, Blennow K, Scheltens P, Muniz-Terrera G, Visser PJ, Initiative ADN (2019) Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement 15:888–898. https://doi.org/10.1016/j.jalz.2019.04.001

Article  PubMed  Google Scholar 

Ngoc Quang D, Hashimoto T, Hitaka Y, Tanaka M, Nukada M, Yamamoto I, Asakawa Y (2003) Thelephantins D-H: five p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 63:919–924. https://doi.org/10.1016/s0031-9422(03)00220-6

Article  PubMed  Google Scholar 

Ye YQ, Koshino H, Onose J, Negishi C, Yoshikawa K, Abe N, Takahashi S (2009) Structural revision of thelephantin G by total synthesis and the inhibitory activity against TNF-alpha production. J Org Chem 74:4642–4645. https://doi.org/10.1021/jo900638b

Article  CAS  PubMed  Google Scholar 

Quang DN, Hashimoto T, Hitaka Y, Tanaka M, Nukada M, Yamamoto I, Asakawa Y (2004) Thelephantins I-N; p-terphenyl derivatives from the inedible mushroom Hydnellum caeruleum. Phytochemistry 65:1179–1184. https://doi.org/10.1016/j.phytochem.2004.02.018

Article  CAS  PubMed  Google Scholar 

Hu L, Gao JM, Liu J (2001) Unusual Poly(phenylacetyloxy)-substituted 1,1′: 4′,1″-terphenyl derivatives from fruiting bodies of the basidiomycete Thelephora ganbajun. Helv Chim Acta 84:3342–3349. https://doi.org/10.1002/1522-2675(20011114)84:11%3c3342::AID-HLCA3342%3e3.0.CO;2-K

Article  CAS  Google Scholar 

Radulović N, Quang DN, Hashimoto T, Nukada M, Asakawa Y (2005) Terrestrins A-G: p-terphenyl derivatives from the inedible mushroom. Phytochemistry 66:1052–1059. https://doi.org/10.1016/j.phytochem.2005.03.008

Article  CAS  PubMed  Google Scholar 

Wang SM, Han JJ, Ma K, Jin T, Bao L, Pei YF, Liu HW (2014) New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 98:149–155. https://doi.org/10.1016/j.fitote.2014.07.019

Article  CAS  PubMed  Google Scholar 

Quang DN, Hashimoto T, Nukada M, Yamamoto I, Hitaka Y, Tanaka M, Asakawa Y (2003) Thelephantins A, B and C: three benzoyl p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta. Phytochemistry 62:109–113. https://doi.org/10.1016/s0031-9422(02)00403-x

Article  CAS  PubMed  Google Scholar 

Tsukamoto S, Macabalang A, Abe T, Hirota H, Ohta T (2002) Thelephorin A: a new radical scavenger from the mushroom Thelephora vialis. Tetrahedron 58:1103–1105. https://doi.org/10.1016/S0040-4020(01)01214-5

Article  CAS  Google Scholar 

N.I.o.A.I. Science, a. Technology, SDBS (https://sdbs.db.aist.go.jp) (accessed 2021.7.28).

Nakabayashi S, Ishikura A, Fujihara K, Hirabayashi S, Koike S, Sasaki H, Ogasawara Y, Koyama K, Kinoshita K (2022) Inhibition of amyloid-β aggregation by p-terphenyls from the mushroom Polyozellus multiplex and their neuroprotective effects. Heterocycles 104:2025–2036. https://doi.org/10.3987/COM-22-14711

Article  CAS  Google Scholar 

Masuda Y, Fujihara K, Hayashi S, Sasaki H, Kino Y, Kamauchi H, Noji M, Satoh JI, Takanami T, Kinoshita K, Koyama K (2021) Inhibition of BACE1 and amyloid-β aggregation by meroterpenoids from the mushroom. J Nat Prod 84:1748–1754. https://doi.org/10.1021/acs.jnatprod.0c01329

Article  CAS  PubMed  Google Scholar 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

Article  CAS  PubMed  Google Scholar 

Villa C, Lavitrano M, Salvatore E, Combi R (2020) Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J Pers Med 10:61. https://doi.org/10.3390/jpm10030061

Article  PubMed  PubMed Central  Google Scholar 

Fujihara K, Koike S, Ogasawara Y, Takahashi K, Koyama K, Kinoshita K (2017) Inhibition of amyloid β aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe. Bioorg Med Chem 25:3377–3383. https://doi.org/10.1016/j.bmc.2017.04.023

Article  CAS  PubMed  Google Scholar 

Fujihara K, Hashimoto T, Sasaki H, Koyama K, Kinoshita K (2023) Inhibition of Aβ aggregation by naphtho-g-pyrone derivatives from a marine-derived fungus, Aspergillus sp. MPUC239. J Nat Med 77:516–522. https://doi.org/10.1007/s11418-023-01696-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujihara K, Hashimoto T, Sasaki H, Koyama K, Kinoshita K (2023) Correction: inhibition of Aβ aggregation by naphtho-γ-pyrone derivatives from a marine-derived fungus, Aspergillus sp. MPUC239. J Nat Med 77:624. https://doi.org/10.1007/s11418-023-01708-8

Article  PubMed  Google Scholar 

Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA (2023) Oxidative stress, the blood-brain barrier and neurodegenerative diseases: the critical beneficial role of dietary antioxidants. Acta Pharm Sin B 13:3988–4024. https://doi.org/10.1016/j.apsb.2023.07.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin JW, Chen JT, Hong CY, Lin YL, Wang KT, Yao CJ, Lai GM, Chen RM (2012) Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol 14:302–314. https://doi.org/10.1093/neuonc/nor217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dutta BJ, Rakshe PS, Maurya N, Chib S, Singh S (2023) Unlocking the therapeutic potential of natural stilbene: exploring pterostilbene as a powerful ally against aging and cognitive decline. Ageing Res Rev 92:102125. https://doi.org/10.1016/j.arr.2023.102125

Article  CAS  PubMed  Google Scholar 

Jaeger BN, Parylak SL, Gage FH (2018) Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 61:50–62. https://doi.org/10.1016/j.mam.2017.11.003

Article  CAS  PubMed  Google Scholar 

Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M (2015) Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and

Comments (0)

No login
gif