McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185. https://doi.org/10.1016/j.ejphar.2007.11.071
Article CAS PubMed PubMed Central Google Scholar
Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917–930. https://doi.org/10.1038/nrn1555
Article CAS PubMed Google Scholar
Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–729. https://doi.org/10.1016/j.pnpbp.2010.04.011
Article CAS PubMed Google Scholar
Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH (2017) Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 77:25–36. https://doi.org/10.1016/j.psyneuen.2016.11.036
Article CAS PubMed Google Scholar
Gu HF, Nie YX, Tong QZ, Tang YL, Zeng Y, Jing KQ, Zheng XL, Liao DF (2014) Epigallocatechin-3-gallate attenuates impairment of learning and memory in chronic unpredictable mild stress-treated rats by restoring hippocampal autophagic flux [published correction appears in PLoS One. 2015;10:e0117649]. PLoS ONE 9:e112683. https://doi.org/10.1371/journal.pone.0112683
Article CAS PubMed PubMed Central Google Scholar
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82:914–923. https://doi.org/10.1016/j.biopsych.2017.05.013
Article PubMed PubMed Central Google Scholar
Murray F, Smith DW, Hutson PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 583:115–127. https://doi.org/10.1016/j.ejphar.2008.01.014
Article CAS PubMed Google Scholar
Jia Y, Liu L, Sheng C, Cheng Z, Cui L, Li M, Zhao Y, Shi T, Yau TO, Li F, Chen L (2019) Increased serum levels of cortisol and inflammatory cytokines in people with depression [published correction appears in J Nerv Ment Dis. 2019;207:610]. J Nerv Ment Dis 207:271–276. https://doi.org/10.1097/NMD.0000000000000957
Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913. https://doi.org/10.1073/pnas.93.9.3908
Article CAS PubMed PubMed Central Google Scholar
Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, Dutra SJ, Polli FE, Iosifescu DV, Fava M, Gabrieli JDE, Pizzagalli DA (2015) Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77:285–294. https://doi.org/10.1016/j.biopsych.2014.06.018
Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T (2008) Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355–1363. https://doi.org/10.1016/j.neuropharm.2008.08.026
Article CAS PubMed Google Scholar
Liu J, Li L, Suo WZ (2009) HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci 84:267–271. https://doi.org/10.1016/j.lfs.2008.12.008
Article CAS PubMed Google Scholar
Xu B, Lang L, Li S, Yuan J, Wang J, Yang H, Lian S (2019) Corticosterone excess-mediated mitochondrial damage induces hippocampal neuronal autophagy in mice following cold exposure. Animals (Basel) 9:682. https://doi.org/10.3390/ani9090682
Zheng Y, Huang J, Tao L, Shen Z, Li H, Mo F, Wang X, Wang S, Shen H (2015) Corticosterone increases intracellular Zn(2+) release in hippocampal HT-22 cells. Neurosci Lett 588:172–177. https://doi.org/10.1016/j.neulet.2015.01.016
Article CAS PubMed Google Scholar
Xu Y, Pan J, Chen L, Zhang C, Sun J, Li J, Nguyen L, Nair N, Zhang H, O’Donnell JM (2013) Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol 16:835–847. https://doi.org/10.1017/S146114571200065X
Article CAS PubMed Google Scholar
Ramos-Hryb AB, Platt N, Freitas AE, Heinrich IA, López MG, Leal RB, Kaster MP, Rodrigues ALS (2019) Protective effects of ursolic acid against cytotoxicity induced by corticosterone: role of protein kinases. Neurochem Res 44:2843–2855. https://doi.org/10.1007/s11064-019-02906-1
Tavares MK, Dos Reis S, Platt N, Heinrich IA, Wolin IAV, Leal RB, Kaster MP, Rodrigues ALS, Freitas AE (2018) Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway. Neurochem Int 118:275–285. https://doi.org/10.1016/j.neuint.2018.05.006
Article CAS PubMed Google Scholar
Li YF, Gong ZH, Cao JB, Wang HL, Luo ZP, Li J (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88. https://doi.org/10.1016/s0014-2999(03)01735-7
Article CAS PubMed Google Scholar
Kanba S, Yamada K, Mizushima H, Asai M (1998) Use of herbal medicine for treating psychiatric disorders in Japan. Psychiatry Clin Neurosci 52(Suppl):S331–S333. https://doi.org/10.1111/j.1440-1819.1998.tb03260.x
Kosuge Y, Saito H, Haraguchi T, Ichimaru Y, Ohashi S, Miyagishi H, Kobayashi S, Ishige K, Miyairi S, Ito Y (2017) Indirubin derivatives protect against endoplasmic reticulum stress-induced cytotoxicity and down-regulate CHOP levels in HT22 cells. Bioorg Med Chem Lett 27:5122–5125. https://doi.org/10.1016/j.bmcl.2017.10.069
Article CAS PubMed Google Scholar
Miyagishi H, Kosuge Y, Yoneoka Y, Ozone M, Endo M, Osada N, Ishige K, Kusama-Eguchi K, Ito Y (2013) Prostaglandin E2-induced cell death is mediated by activation of EP2 receptors in motor neuron-like NSC-34 cells. J Pharmacol Sci 121:347–350. https://doi.org/10.1254/jphs.12274sc
Article CAS PubMed Google Scholar
Kosuge Y, Nango H, Kasai H, Yanagi T, Mawatari T, Nishiyama K, Miyagishi H, Ishige K, Ito Y (2020) Generation of cellular reactive oxygen species by activation of the EP2 receptor contributes to prostaglandin e2-induced cytotoxicity in motor neuron-like NSC-34 cells. Oxid Med Cell Longev 2020:6101838. https://doi.org/10.1155/2020/6101838
Article CAS PubMed PubMed Central Google Scholar
Miyagishi H, Tsuji M, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Kosuge Y, Ishige K, Takeda H (2022) Possible role of transcriptional regulation of 5-HT1A receptor in the midbrain on unadaptation to stress in mice. Brain Res 1783:147859. https://doi.org/10.1016/j.brainres.2022.147859
Article CAS PubMed Google Scholar
Freitas AE, Neis VB, Rodrigues ALS (2016) Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 26:1885–1899. https://doi.org/10.1016/j.euroneuro.2016.10.013
Article CAS PubMed Google Scholar
Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues AL, López MG (2015) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 51:1504–1519. https://doi.org/10.1007/s12035-014-8827-1
Article CAS PubMed Google Scholar
Mantani N, Hisanaga A, Kogure T, Kita T, Shimada Y, Terasawa K (2002) Four cases of panic disorder successfully treated with Kampo (Japanese herbal) medicines: kami-shoyo-san and Hange-koboku-to. Psychiatry Clin Neurosci 56:617–620. https://doi.org/10.1046/j.1440-1819.2002.01064.x
Hisanaga A, Itoh T, Hasegawa Y, Emori K, Kita T, Okabe A, Kurachi M (2002) A case of sleep choking syndrome improved by the Kampo extract of Hange-koboku-to. Psychiatry Clin Neurosci 56:325–327. https://doi.org/10.1046/j.1440-1819.2002.01001.x
Jia KK, Zheng YJ, Zhang YX, Liu JH, Jiao RQ, Pan Y, Kong LD (2017) Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain. J Ethnopharmacol 209:219–229. https://doi.org/10.1016/j.jep.2017.08.004
Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077. https://doi.org/10.1038/npp.2013.5
Article CAS PubMed PubMed Central Google Scholar
Chen ZY, Xie DF, Liu ZY, Zhong YQ, Zeng JY, Chen Z, Chen XL (2020) Identification of the significant pathways of Banxia Houpu decoction in the treatment of depression based on network pharmacology. PLoS ONE 15:e0239843. https://doi.org/10.1371/journal.pone.0239843
Article CAS PubMed PubMed Central Google Scholar
Jee HJ, Ryu D, Kim S, Eon SH, Son RH, Hwang SH, Jung YS (2022) Fermented Perilla frutescens ameliorates depression-like behavior in sleep-deprivation-induced stress model. Int J Mol Sci 24:622. https://doi.org/10.3390/ijms24010622
Comments (0)