Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks

Parvatkar, P. T. et al. A tailored COF for visible-light photosynthesis of 2,3-dihydrobenzofurans. J. Am. Chem. Soc. 145, 5074–5082 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, Y., Zhou, Z. B., Qi, Q. Y., Yao, J. & Zhao, X. Polyamide covalent organic framework membranes for molecular sieving. ACS Appl. Mater. Interfaces 14, 37019–37027 (2022).

Article  CAS  PubMed  Google Scholar 

Shi, B. B. et al. Spacer-engineered ionic channels in covalent organic framework membranes toward ultrafast proton transport. Adv. Mater. 35, 2211004 (2023).

Article  CAS  Google Scholar 

Cao, L. et al. Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat. Commun. 13, 7894 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, R. et al. Ultrathin covalent organic framework membranes prepared by rapid electrophoretic deposition. Adv. Mater. 34, 2204894 (2022).

Article  CAS  Google Scholar 

Ke, S. W. et al. Covalent organic frameworks with Ni-Bis(dithiolene) and Co-porphyrin units as bifunctional catalysts for Li-O2 batteries. Sci. Adv. 9, eadf2398 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y. P. et al. Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem. Int. Ed. 62, e202215584 (2023).

Article  CAS  Google Scholar 

Xu, X. Y. et al. Janus dione-based conjugated covalent organic frameworks with high conductivity as superior cathode materials. J. Am. Chem. Soc. 145, 1022–1030 (2023).

Article  CAS  PubMed  Google Scholar 

Yang, L. et al. Self-controlled growth of covalent organic frameworks by repolymerization. Chem. Mater. 32, 5634–5640 (2020).

Article  CAS  Google Scholar 

Tang, Y. Z., Zheng, M. Z., Xue, W. J., Huang, H. L. & Zhang, G. L. Combined skeleton and spatial rigidification of AIEgens in 2D covalent organic frameworks for boosted fluorescence emission and sensing of antibiotics. ACS Appl. Mater. Interfaces 14, 37853–37864 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, L. et al. Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosens. Bioelectron. 217, 114668 (2022).

Article  CAS  PubMed  Google Scholar 

Meng, Z. & Mirica, K. A. Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 50, 13498–13558 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, L. et al. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat. Commun. 13, 7936 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, Q. Y. et al. Olefin-linked covalent organic frameworks with twisted tertiary amine knots for enhanced ultraviolet detection. Chin. Chem. Lett. 33, 2621–2624 (2022).

Article  CAS  Google Scholar 

Peng, L. et al. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, L. et al. Ultra-fast synthesis of single-crystalline three-dimensional covalent organic frameworks and their applications in polarized optics. Chem. Mater. 34, 2886–2895 (2022).

Article  CAS  Google Scholar 

Hai-Sen, X. U. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).

Article  Google Scholar 

Gavezzotti, A. Are crystal structures predictable? Acc. Chem. Res. 27, 309–314 (1994).

Article  CAS  Google Scholar 

Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).

Article  CAS  Google Scholar 

Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

Article  CAS  PubMed  Google Scholar 

Baston, T. J. & Bowden, F. P. Localized damage of metal crystals by laser irradiation. Nature 218, 150–152 (1968).

Article  CAS  Google Scholar 

Shoenberg, D. Magnetic properties of metal single crystals at low temperatures. Nature 164, 225–226 (1949).

Article  CAS  Google Scholar 

Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different twodimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

Article  CAS  PubMed  Google Scholar 

Jeon, S. et al. Reversible disorder–order transitions in atomic crystal nucleation. Science 371, 498–503 (2021).

Article  CAS  PubMed  Google Scholar 

Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

Article  CAS  PubMed  Google Scholar 

Wen, C. et al. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 32, 2002525 (2020).

Article  CAS  Google Scholar 

Wilson, M. & Madden, P. A. Growth of ionic crystals in carbon nanotubes. J. Am. Chem. Soc. 123, 2101–2102 (2001).

Article  CAS  PubMed  Google Scholar 

Nangia, A. Conformational polymorphism in organic crystals. Acc. Chem. Res. 41, 595–604 (2008).

Article  CAS  PubMed  Google Scholar 

Dalgarno, S. J., Thallapally, R. K., Barbour, L. J. & Atwood, J. L. Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev. 36, 236–245 (2007).

Article  CAS  PubMed  Google Scholar 

Taylor, R. & Kennard, O. Hydrogen-bond geometry in organic crystals. Acc. Chem. Res. 17, 320–326 (1984).

Article  CAS  Google Scholar 

Adolf, C. R. R., Ferlay, S., Kyritsakas, N. & Hosseini, M. W. Welding molecular crystals. J. Am. Chem. Soc. 137, 15390–15393 (2015).

Article  CAS  PubMed  Google Scholar 

Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

Article  CAS  PubMed  Google Scholar 

Brammer, L. Developments in inorganic crystal engineering. Chem. Soc. Rev. 33, 476–489 (2004).

Article  CAS  PubMed  Google Scholar 

Bürgi, H. B. & Dunitz, J. D. From crystal statics to chemical dynamics. Acc. Chem. Res. 16, 153–161 (1983).

Article  Google Scholar 

Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35, 565–573 (2002).

Article  CAS  PubMed  Google Scholar 

Braga, D. & Grepioni, F. Intermolecular interactions in nonorganic crystal engineering. Acc. Chem. Res. 33, 601–608 (2000).

Article  CAS  PubMed  Google Scholar 

Hu, W. B. Polymer features in crystallization. Chin. J. Polym. Sci. 40, 545–555 (2022).

Article  CAS  Google Scholar 

Evans, A. M. et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J. Am. Chem. Soc. 141, 19728–19735 (2019).

Article  CAS  PubMed  Google Scholar 

Kang, C. J. et al. Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nat. Commun. 13, 1370 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, L. et al. Noninterpenetrated single-crystal covalent organic frameworks. Angew. Chem. Int. Ed. 59, 17991–17995 (2020).

Article  CAS  Google Scholar 

Wang, H. J. et al. Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13, 7123 (2022).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif