Chen, Y., Yang, Y. & Zhang, F. Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials. Nat. Protoc. 19, 2386–2407 (2024).
Article CAS PubMed Google Scholar
Wang, F. et al. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photon. 18, 535–547 (2024).
Wang, X. et al. An emerging toolkit of Ho3+ sensitized lanthanide nanocrystals with NIR-II excitation and emission for in vivo bioimaging. J. Am. Chem. Soc. 147, 2182–2192 (2025).
Article CAS PubMed Google Scholar
Li, J. et al. Progressive optimization of lanthanide nanoparticle scintillators for enhanced triple-activated radioluminescence imaging. Angew. Chem. Int. Ed. 63, e202401683 (2024).
Kou, Y. et al. Fluorine doping mediated epitaxial growth of NaREF4 on TiO2 for boosting NIR light utilization in bioimaging and photodynamic therapy. Angew. Chem. Int. Ed. 63, e202405132 (2024).
Chang, Y. et al. Bright Tm3+-based downshifting luminescence nanoprobe operating around 1800 nm for NIR-IIb and c bioimaging. Nat. Commun. 14, 1079–1088 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).
Article CAS PubMed Google Scholar
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).
Article CAS PubMed Google Scholar
Casar, J. R. et al. Upconverting microgauges reveal intraluminal force dynamics in vivo. Nature 637, 76–83 (2025).
Article CAS PubMed Google Scholar
Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).
Article CAS PubMed Google Scholar
Ou, X. et al. High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021).
Article CAS PubMed Google Scholar
Schiattarella, C. et al. Directive giant upconversion by supercritical bound states in the continuum. Nature 626, 765–771 (2024).
Article CAS PubMed PubMed Central Google Scholar
Zhou, M. et al. Ultrafast upconversion superfluorescence with a sub-2.5 ns lifetime at room temperature. Nat. Commun. 15, 9880 (2024).
Article CAS PubMed PubMed Central Google Scholar
Wang, L. & Li, Y. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727–734 (2007).
Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).
Article CAS PubMed Google Scholar
Han, S. et al. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nat. Commun. 7, 13059 (2016).
Article CAS PubMed PubMed Central Google Scholar
Lei, L. et al. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat. Commun. 13, 5739 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wen, S. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415–2426 (2018).
Article PubMed PubMed Central Google Scholar
Jiang, Z. et al. Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals. Nat. Commun. 14, 827 (2023).
Article CAS PubMed PubMed Central Google Scholar
Liu, G. et al. Li/Na substitution and Yb3+ co-doping enabling tunable near-infrared emission in LiIn2SbO6:Cr3+ phosphors for light-emitting diodes. iScience 24, 102250 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. et al. Blue LED-pumped intense short-wave infrared luminescence based on Cr3+-Yb3+-co-doped phosphors. Light Sci. Appl. 11, 136 (2022).
Article CAS PubMed PubMed Central Google Scholar
Shi, B. et al. Efficient and stable NIR-II phosphorescence of metallophilic molecular oligomers for in vivo single-cell tracking and time-resolved imaging. Angew. Chem. Int. Ed. 63, e202410118 (2024).
Chen, Z. et al. An extended NIR-II superior imaging window from 1500 to 1900 nm for high-resolution in vivo multiplexed imaging based on lanthanide nanocrystals. Angew. Chem. Int. Ed. 62, e202311883 (2023).
Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).
Yang, Y., Jiang, Q. & Zhang, F. Nanocrystals for deep-tissue in vivo luminescence imaging in the near-infrared region. Chem. Rev. 124, 554–628 (2024).
Article CAS PubMed Google Scholar
Zhu, X., Zhang, H. & Zhang, F. Expanding NIR-II lanthanide toolboxes for improved biomedical imaging and detection. Acc. Mater. Res. 4, 536–547 (2023).
Li, S. et al. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem. Soc. Rev. 52, 1672–1696 (2023).
Article CAS PubMed Google Scholar
Cheng, X. et al. Recent development in sensitizers for lanthanide-doped upconversion luminescence. Chem. Rev. 122, 15998–16050 (2022).
Article CAS PubMed Google Scholar
Fang, Z. et al. Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy. Nat. Nanotechnol. 19, 124–130 (2023).
Wei, X. et al. Longer and stronger: improving persistent luminescence in size-tuned zinc gallate nanoparticles by alcohol-mediated chromium doping. ACS Nano 14, 12113–12124 (2020).
Article CAS PubMed Google Scholar
He, F. Q. et al. A general ammonium salt assisted synthesis strategy for Cr3+-doped hexafluorides with highly efficient near infrared emissions. Adv. Funct. Mater. 31, 2103743 (2021).
Garfield, D. J. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photon. 12, 402–407 (2018).
Xu, H. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nat. Photon. 15, 732–737 (2021).
Han, S. et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature 587, 594–599 (2020).
Comments (0)