Fabrication of angstrom-scale two-dimensional channels for mass transport

Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluidics. 1, 249–267 (2005).

Article  CAS  Google Scholar 

Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

Article  CAS  PubMed  Google Scholar 

Convery, N. & Gadegaard, N. 30 years of microfluidics. Micro Nano. Eng. 2, 76–91 (2019).

Article  Google Scholar 

van den Berg, A., Craighead, H. G. & Yang, P. From microfluidic applications to nanofluidic phenomena. Chem. Soc. Rev. 39, 899–900 (2010).

Article  PubMed  Google Scholar 

Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

Article  PubMed  Google Scholar 

Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846 (2010).

Article  CAS  PubMed  Google Scholar 

Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002).

Article  CAS  PubMed  Google Scholar 

Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

Article  CAS  PubMed  Google Scholar 

Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289 (2014).

Article  CAS  PubMed  Google Scholar 

Jiang, D.-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

Article  CAS  PubMed  Google Scholar 

Berezhkovskii, A. & Hummer, G. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002).

Article  PubMed  Google Scholar 

Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320 (2010).

Article  CAS  PubMed  Google Scholar 

Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Won, C. Y. & Aluru, N. R. Water permeation through a subnanometer boron nitride nanotube. J. Am. Chem. Soc. 129, 2748–2749 (2007).

Article  CAS  PubMed  Google Scholar 

Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

Article  CAS  PubMed  Google Scholar 

Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014).

Article  CAS  PubMed  Google Scholar 

Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442 (2012).

Article  CAS  PubMed  Google Scholar 

Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

Article  CAS  PubMed  Google Scholar 

Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

Article  CAS  PubMed  Google Scholar 

Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

Article  CAS  Google Scholar 

Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

Article  CAS  PubMed  Google Scholar 

Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

Article  CAS  PubMed  Google Scholar 

Feng, J. et al. Observation of ionic coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

Article  CAS  PubMed  Google Scholar 

Ayuk, E., Ugwu, M. & Aronimo, S. B. A review on synthetic methods of nanostructured materials. Chem. Res. J. 2, 97–123 (2017).

CAS  Google Scholar 

Biswas, A. et al. Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012).

Article  CAS  PubMed  Google Scholar 

Chen, Q. & Liu, Z. Fabrication and applications of solid-state nanopores. Sensors 19, 1886 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

Article  CAS  PubMed  Google Scholar 

Kim, M. J., McNally, B., Murata, K. & Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18, 205302 (2007).

Article  Google Scholar 

Lin, Y., Ying, Y.-L., Shi, X., Liu, S.-C. & Long, Y.-T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 53, 11564–11567 (2017).

Article  CAS  Google Scholar 

Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).

Article  CAS  PubMed  Google Scholar 

Lo, C. J., Aref, T. & Bezryadin, A. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17, 3264 (2006).

Article  CAS  Google Scholar 

Gierak, J. et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007).

Article  CAS  Google Scholar 

O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

Article  PubMed  Google Scholar 

Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker, M. I. et al. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Z. et al. DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Sci. Rep. 3, 3287 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M. & Wanunu, M. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019).

Article  CAS  PubMed  Google Scholar 

Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).

Article  CAS  PubMed  Google Scholar 

Guan, C. Z., Wang, D. & Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

Article 

Comments (0)

No login
gif