Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluidics. 1, 249–267 (2005).
Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).
Article CAS PubMed Google Scholar
Convery, N. & Gadegaard, N. 30 years of microfluidics. Micro Nano. Eng. 2, 76–91 (2019).
van den Berg, A., Craighead, H. G. & Yang, P. From microfluidic applications to nanofluidic phenomena. Chem. Soc. Rev. 39, 899–900 (2010).
Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13 (2006).
Article CAS PubMed PubMed Central Google Scholar
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846 (2010).
Article CAS PubMed Google Scholar
Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002).
Article CAS PubMed Google Scholar
Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).
Article CAS PubMed Google Scholar
Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289 (2014).
Article CAS PubMed Google Scholar
Jiang, D.-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).
Article CAS PubMed Google Scholar
Berezhkovskii, A. & Hummer, G. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002).
Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320 (2010).
Article CAS PubMed Google Scholar
Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).
Article CAS PubMed PubMed Central Google Scholar
Won, C. Y. & Aluru, N. R. Water permeation through a subnanometer boron nitride nanotube. J. Am. Chem. Soc. 129, 2748–2749 (2007).
Article CAS PubMed Google Scholar
Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).
Article CAS PubMed Google Scholar
Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014).
Article CAS PubMed Google Scholar
Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442 (2012).
Article CAS PubMed Google Scholar
Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).
Article CAS PubMed Google Scholar
Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).
Article CAS PubMed Google Scholar
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).
Article CAS PubMed Google Scholar
Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).
Article CAS PubMed Google Scholar
Feng, J. et al. Observation of ionic coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).
Article CAS PubMed Google Scholar
Ayuk, E., Ugwu, M. & Aronimo, S. B. A review on synthetic methods of nanostructured materials. Chem. Res. J. 2, 97–123 (2017).
Biswas, A. et al. Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012).
Article CAS PubMed Google Scholar
Chen, Q. & Liu, Z. Fabrication and applications of solid-state nanopores. Sensors 19, 1886 (2019).
Article CAS PubMed PubMed Central Google Scholar
Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).
Article CAS PubMed Google Scholar
Kim, M. J., McNally, B., Murata, K. & Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18, 205302 (2007).
Lin, Y., Ying, Y.-L., Shi, X., Liu, S.-C. & Long, Y.-T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 53, 11564–11567 (2017).
Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).
Article CAS PubMed Google Scholar
Lo, C. J., Aref, T. & Bezryadin, A. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17, 3264 (2006).
Gierak, J. et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007).
O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).
Article CAS PubMed PubMed Central Google Scholar
Walker, M. I. et al. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zhou, Z. et al. DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Sci. Rep. 3, 3287 (2013).
Article PubMed PubMed Central Google Scholar
Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).
Article CAS PubMed PubMed Central Google Scholar
Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M. & Wanunu, M. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019).
Article CAS PubMed Google Scholar
Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).
Article CAS PubMed Google Scholar
Guan, C. Z., Wang, D. & Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).
Comments (0)