Agster KL, Mejias-Aponte CA, Clark BD, Waterhouse BD (2013) Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. J Comp Neurol 521(10):2195–2207. https://doi.org/10.1002/cne.23270
Article CAS PubMed PubMed Central Google Scholar
Ansquer S, Belin-Rauscent A, Dugast E, Duran T, Benatru I, Mar AC, Houeto JL, Belin D (2014) Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol Psychiat 75(10):825–832. https://doi.org/10.1016/j.biopsych.2013.09.031
Article CAS PubMed Google Scholar
Arnsten A, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8(11):4287–4298
Article CAS PubMed PubMed Central Google Scholar
Arnsten AFT, Steere JC, Hunt RD (1996) The contribution of α2-noradrenergic mechanisms to prefrontal cortical cognitive function: Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53(4):448–455
Article CAS PubMed Google Scholar
Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Ann Rev Neurosci 28:403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709
Article CAS PubMed Google Scholar
Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14(7):4467–4480
Article CAS PubMed PubMed Central Google Scholar
Baarendse PJJ, Winstanley CA, Vanderschuren LJMJ (2014) Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology 225(3):719–731. https://doi.org/10.1007/s00213-012-2857-z.Simultaneous
Bari A, Eagle DM, Mar AC, Robinson ESJ, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205(2):273–283. https://doi.org/10.1007/s00213-009-1537-0
Article CAS PubMed PubMed Central Google Scholar
Bari A, Mar AC, Theobald DE, Elands SA, Oganya KCNA, Eagle DM, Robbins TW (2011) Prefrontal and monoaminergic contributions to stop-signal task performance in rats. J Neurosci 31(25):9254–9263. https://doi.org/10.1523/JNEUROSCI.1543-11.2011
Article CAS PubMed PubMed Central Google Scholar
Bari A, Xu S, Pignatelli M, Takeuchi D, Feng J, Li Y, Tonegawa S (2020) Differential attentional control mechanisms by two distinct noradrenergic coeruleo-frontal cortical pathways. Proc Natl Acad Sci USA 117(46):29080–29089. https://doi.org/10.1073/pnas.2015635117
Article CAS PubMed PubMed Central Google Scholar
Barrus MM, Winstanley CA (2016) Dopamine D3 receptors modulate the ability of win-paired cues to increase risky choice in a rat gambling task. J Neurosci 36(3):785–794. https://doi.org/10.1523/JNEUROSCI.2225-15.2016
Article CAS PubMed PubMed Central Google Scholar
Barrus MM, Hosking JG, Zeeb FD, Tremblay M, Winstanley CA (2015) Disadvantageous decision-making on a rodent gambling task is associated with increased motor impulsivity in a population of male rats. J Psychiatry Neurosci 40(2):108–117. https://doi.org/10.1503/jpn.140045
Article PubMed PubMed Central Google Scholar
Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10(3):295–307. https://doi.org/10.1093/cercor/10.3.295
Article CAS PubMed Google Scholar
Berridge CW, Waterhouse BD (2003) The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42(1):33–84. https://doi.org/10.1016/S0165-0173(03)00143-7
Betts GD, Hynes TJ, Winstanley CA (2021) Pharmacological evidence of a cholinergic contribution to elevated impulsivity and risky decision-making caused by adding win-paired cues to a rat gambling task. J Psychopharmacol 35(6):701–712. https://doi.org/10.1177/0269881120972421
Article CAS PubMed Google Scholar
Bolla KI, Eldreth DA, Matochik JA, Cadet JL (2004) Sex-related differences in a gambling task and its neurological correlates. Cereb Cortex 14(11):1226–1232. https://doi.org/10.1093/cercor/bhh083
Article CAS PubMed Google Scholar
Bouret S, Richmond BJ (2015) Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. J Neurosci 35(9):4005–4014. https://doi.org/10.1523/JNEUROSCI.4553-14.2015
Article CAS PubMed PubMed Central Google Scholar
Bouret S, Sara SJ (2004) Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur J Neurosci 20(3):791–802. https://doi.org/10.1111/j.1460-9568.2004.03526.x
Brito GNO, Brito LSO (1990) Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behav Brain Res 36(1):127–146. https://doi.org/10.1016/0166-4328(90)90167-D
Article CAS PubMed Google Scholar
Bymaster FP, Katner JS, Nelson DL, Hemrick-luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit / hyperactivity disorder. Neuropsychopharmacology 27(5):699–711
Article CAS PubMed Google Scholar
Cai JX, Ma Y, Hu X (1993) Reserpine impairs spatial working memory performance in monkeys: reversal by the α2-adrenergic agonist clonidine. Brain Res 614(1–2):191–196. https://doi.org/10.1016/0006-8993(93)91034-P
Article CAS PubMed Google Scholar
Callado LF, Stamford JA (1999) α2A- But not α2B/C-adrenoceptors modulate noradrenaline release in rat locus coeruleus: voltammetric data. Eur J Pharmacol 366(1):35–39. https://doi.org/10.1016/S0014-2999(98)00889-9
Article CAS PubMed Google Scholar
Castelli MP, Spiga S, Perra A, Madeddu C, Mulas G, Ennas MG, Gessa GL (2016) α2A adrenergic receptors highly expressed in mesoprefrontal dopamine neurons. Neuroscience 332:130–139. https://doi.org/10.1016/j.neuroscience.2016.06.037
Article CAS PubMed Google Scholar
Caswell AJ, Bond R, Duka T, Morgan MJ (2015) Further evidence of the heterogeneous nature of impulsivity. Personality Individ Differ 76:68–74. https://doi.org/10.1016/j.paid.2014.11.059
Cerpa J-C, Piccin A, Dehove M, Lavigne M, Kremer EJ, Wolff M, Parkes SL (2022) Noradrenergic signaling in the rodent orbitofrontal cortex is required to update goal directed actions. BioRxiv. https://doi.org/10.1101/2022.06.30.498245
Chamberlain SR, Sahakian BJ (2007) The neuropsychiatry of impulsivity. Curr Opin Psychiatry 20(3):255–261. https://doi.org/10.1097/YCO.0b013e3280ba4989
Chandler DJ, Lamperski CS, Waterhouse BD (2013) Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res 1522:38–58. https://doi.org/10.1016/j.brainres.2013.04.057
Article CAS PubMed Google Scholar
Chandler DJ, Gao W, Waterhouse BD (2014) Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci 111(18):6816–6821. https://doi.org/10.1073/pnas.1320827111
Article CAS PubMed PubMed Central Google Scholar
Cherkasova MV, Clark L, Barton JJS, Schulzer M, Shafiee M, Kingstone A, Stoessl XAJ, Winstanley CA (2018) Win-concurrent sensory cues can promote riskier choice. J Neurosci 38(48):10362–10370
Article CAS PubMed PubMed Central Google Scholar
Chernoff CS, Hynes TJ, Winstanley CA (2021) Noradrenergic contributions to cue-driven risk-taking and impulsivity. Psychopharmacology 238(7):1765–1779. https://doi.org/10.1007/s00213-021-05806-x
Article CAS PubMed Google Scholar
Devedjian J-C, Esclapez F, Denis-Pouxviel C, Paris H (1994) Further characterization of human α2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol 252(1):43–49. https://doi.org/10.1016/0014-2999(94)90573-8
Article CAS PubMed Google Scholar
Devoto P, Flore G, Saba P, Fà M, Gessa GL (2005) Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus. BMC Neurosci 6(1):31. https://doi.org/10.1186/1471-2202-6-31
Article CAS PubMed PubMed Central Google Scholar
Dixon MJ, Graydon C, Harrigan KA, Wojtowicz L, Siu V, Fugelsang JA (2014) The allure of multi-line games in modern slot machines. Addiction 109(11):1920–1928.
Comments (0)