SK609, a novel dopamine D3 receptor agonist and norepinephrine transporter blocker with putative pro-cognitive actions, does not induce psychostimulant-like increases in risky choice during probabilistic discounting

Al-Adawi S, Al-Naamani A, Jaju S et al (2020) Methylphenidate improves executive functions in patients with traumatic brain injuries: a feasibility trial via the idiographic approach. BMC Neurol 20(1):103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amini B, Yang PB, Swann AC, Dafny N (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci 114(9):1063–1084

Article  CAS  PubMed  Google Scholar 

Andrzejewski ME, Spencer RC, Harris RL et al (2014) The effects of clinically relevant doses of amphetamine and methylphenidate on signal detection and DRL in rats. Neuropharmacology 79:634–641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2(11):436–447

Article  CAS  PubMed  Google Scholar 

Arnsten AFT (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology 31(11):2376–2383

Article  CAS  PubMed  Google Scholar 

Arnsten AFT, Li B-M (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57(11):1377–1384

Article  CAS  PubMed  Google Scholar 

Baarendse PJ, Winstanley CA, Vanderschuren LJ (2013) Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology 225(3):719–731

Article  CAS  PubMed  Google Scholar 

Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15

Article  CAS  PubMed  Google Scholar 

Bercovici DA, Princz-Lebel O, Schumacher JD et al (2023) Temporal dynamics underlying prelimbic prefrontal cortical regulation of action selection and outcome evaluation during risk/reward decision-making. J Neurosci 43(7):1238–1255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berridge CW, Devilbiss DM, Andrzejewski ME et al (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the Prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60(10):1111–1120

Article  CAS  PubMed  Google Scholar 

Berridge CW, Shumsky JS, Andrzejewski ME et al (2012) Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α1- and α2-Receptors. Biol Psychiatry 71(5):467–473

Article  CAS  PubMed  Google Scholar 

Berridge CW, Stalnaker TA (2002) Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Synapse 46(3):140–149

Article  CAS  PubMed  Google Scholar 

Bizarro L, Patel S, Murtagh C, Stolerman IP (2004) Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav Pharmacol 15(3):195–206

Article  CAS  PubMed  Google Scholar 

Buelow MT, Suhr JA (2009) Construct validity of the iowa gambling task. Neuropsychol Rev 19(1):102–114

Article  PubMed  Google Scholar 

Bymaster FP, Katner JS, Nelson DL et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5):699–711

Article  CAS  PubMed  Google Scholar 

Cain RE, Wasserman MC, Waterhouse BD, McGaughy JA (2011) Atomoxetine facilitates attentional set shifting in adolescent rats. Dev Cogn Neurosci 1(4):552–559

Article  PubMed  PubMed Central  Google Scholar 

Chernoff CS, Hynes TJ, Schumacher JD et al (2023) Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacol (Berl). https://doi.org/10.1007/s00213-023-06508-2

Chernoff CS, Hynes TJ, Winstanley CA (2021) Noradrenergic contributions to cue-driven risk-taking and impulsivity. Psychopharmacology 238(7):1765–1779

Article  CAS  PubMed  Google Scholar 

Dalia A, Wallace LJ (1995) Amphetamine induction of c-fos in the nucleus accumbens is not inhibited by glutamate antagonists. Brain Res 694(1–2):299–307

Article  CAS  PubMed  Google Scholar 

De Crescenzo F, Cortese S, Adamo N, Janiri L (2017) Pharmacological and non-pharmacological treatment of adults with ADHD: a meta-review. Evid Based Ment Health 20(1):4–11

Article  PubMed  Google Scholar 

DeMarchi R, Bansal V, Hung A et al (2005) Review of awakening agents. Can J Neurol Sci 32(1):4–17

Article  PubMed  Google Scholar 

Devilbiss DM, Berridge CW (2008) Cognition-enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness. Biol Psychiatry 64(7):626–635

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durell TM, Adler LA, Williams DW et al (2013) Atomoxetine treatment of attention-deficit/hyperactivity disorder in young adults with assessment of functional outcomes: a randomized, double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol 33(1):45–54

Article  CAS  PubMed  Google Scholar 

Ekinci O, Direk M, Gunes S et al (2017) Short-term efficacy and tolerability of methylphenidate in children with traumatic brain injury and attention problems. Brain Dev 39(4):327–336

Article  PubMed  Google Scholar 

Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehavioral Reviews 87:255–270

Article  CAS  Google Scholar 

Floresco SB, Whelan JM (2009) Perturbations in different forms of cost/benefit decision making induced by repeated amphetamine exposure. Psychopharmacology 205(2):189–201

Article  CAS  PubMed  Google Scholar 

Gaytan O, Ghelani D, Martin S et al (1996) Dose response characteristics of methylphenidate on different indices of rats’ locomotor activity at the beginning of the dark cycle. Brain Res 727(1–2):13–21

Article  CAS  PubMed  Google Scholar 

Grilly DM, Loveland A (2001) What is a low dose of d-amphetamine for inducing behavioral effects in laboratory rats? Psychopharmacology 153(2):155–169

Article  CAS  PubMed  Google Scholar 

Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol 27(6):479–496

Article  PubMed  PubMed Central  Google Scholar 

Huang CH, Huang CC, Sun CK et al (2016) Methylphenidate on cognitive improvement in patients with traumatic Brain Injury: a Meta-analysis. Curr Neuropharmacol 14(3):272–281

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jentsch JD, Aarde SM, Seu E (2009) Effects of atomoxetine and methylphenidate on performance of a lateralized reaction time task in rats. Psychopharmacology 202(1):497–504

Article  CAS  PubMed  Google Scholar 

Johansson B, Wentzel AP, Andréll P et al (2017) Long-term treatment with methylphenidate for fatigue after traumatic brain injury. Acta Neurol Scand 135(1):100–107

Article  CAS 

Comments (0)

No login
gif