Al-Adawi S, Al-Naamani A, Jaju S et al (2020) Methylphenidate improves executive functions in patients with traumatic brain injuries: a feasibility trial via the idiographic approach. BMC Neurol 20(1):103
Article CAS PubMed PubMed Central Google Scholar
Amini B, Yang PB, Swann AC, Dafny N (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci 114(9):1063–1084
Article CAS PubMed Google Scholar
Andrzejewski ME, Spencer RC, Harris RL et al (2014) The effects of clinically relevant doses of amphetamine and methylphenidate on signal detection and DRL in rats. Neuropharmacology 79:634–641
Article CAS PubMed PubMed Central Google Scholar
Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2(11):436–447
Article CAS PubMed Google Scholar
Arnsten AFT (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology 31(11):2376–2383
Article CAS PubMed Google Scholar
Arnsten AFT, Li B-M (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57(11):1377–1384
Article CAS PubMed Google Scholar
Baarendse PJ, Winstanley CA, Vanderschuren LJ (2013) Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology 225(3):719–731
Article CAS PubMed Google Scholar
Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15
Article CAS PubMed Google Scholar
Bercovici DA, Princz-Lebel O, Schumacher JD et al (2023) Temporal dynamics underlying prelimbic prefrontal cortical regulation of action selection and outcome evaluation during risk/reward decision-making. J Neurosci 43(7):1238–1255
Article CAS PubMed PubMed Central Google Scholar
Berridge CW, Devilbiss DM, Andrzejewski ME et al (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the Prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60(10):1111–1120
Article CAS PubMed Google Scholar
Berridge CW, Shumsky JS, Andrzejewski ME et al (2012) Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α1- and α2-Receptors. Biol Psychiatry 71(5):467–473
Article CAS PubMed Google Scholar
Berridge CW, Stalnaker TA (2002) Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Synapse 46(3):140–149
Article CAS PubMed Google Scholar
Bizarro L, Patel S, Murtagh C, Stolerman IP (2004) Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav Pharmacol 15(3):195–206
Article CAS PubMed Google Scholar
Buelow MT, Suhr JA (2009) Construct validity of the iowa gambling task. Neuropsychol Rev 19(1):102–114
Bymaster FP, Katner JS, Nelson DL et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5):699–711
Article CAS PubMed Google Scholar
Cain RE, Wasserman MC, Waterhouse BD, McGaughy JA (2011) Atomoxetine facilitates attentional set shifting in adolescent rats. Dev Cogn Neurosci 1(4):552–559
Article PubMed PubMed Central Google Scholar
Chernoff CS, Hynes TJ, Schumacher JD et al (2023) Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacol (Berl). https://doi.org/10.1007/s00213-023-06508-2.
Chernoff CS, Hynes TJ, Winstanley CA (2021) Noradrenergic contributions to cue-driven risk-taking and impulsivity. Psychopharmacology 238(7):1765–1779
Article CAS PubMed Google Scholar
Dalia A, Wallace LJ (1995) Amphetamine induction of c-fos in the nucleus accumbens is not inhibited by glutamate antagonists. Brain Res 694(1–2):299–307
Article CAS PubMed Google Scholar
De Crescenzo F, Cortese S, Adamo N, Janiri L (2017) Pharmacological and non-pharmacological treatment of adults with ADHD: a meta-review. Evid Based Ment Health 20(1):4–11
DeMarchi R, Bansal V, Hung A et al (2005) Review of awakening agents. Can J Neurol Sci 32(1):4–17
Devilbiss DM, Berridge CW (2008) Cognition-enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness. Biol Psychiatry 64(7):626–635
Article CAS PubMed PubMed Central Google Scholar
Durell TM, Adler LA, Williams DW et al (2013) Atomoxetine treatment of attention-deficit/hyperactivity disorder in young adults with assessment of functional outcomes: a randomized, double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol 33(1):45–54
Article CAS PubMed Google Scholar
Ekinci O, Direk M, Gunes S et al (2017) Short-term efficacy and tolerability of methylphenidate in children with traumatic brain injury and attention problems. Brain Dev 39(4):327–336
Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehavioral Reviews 87:255–270
Floresco SB, Whelan JM (2009) Perturbations in different forms of cost/benefit decision making induced by repeated amphetamine exposure. Psychopharmacology 205(2):189–201
Article CAS PubMed Google Scholar
Gaytan O, Ghelani D, Martin S et al (1996) Dose response characteristics of methylphenidate on different indices of rats’ locomotor activity at the beginning of the dark cycle. Brain Res 727(1–2):13–21
Article CAS PubMed Google Scholar
Grilly DM, Loveland A (2001) What is a low dose of d-amphetamine for inducing behavioral effects in laboratory rats? Psychopharmacology 153(2):155–169
Article CAS PubMed Google Scholar
Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol 27(6):479–496
Article PubMed PubMed Central Google Scholar
Huang CH, Huang CC, Sun CK et al (2016) Methylphenidate on cognitive improvement in patients with traumatic Brain Injury: a Meta-analysis. Curr Neuropharmacol 14(3):272–281
Article CAS PubMed PubMed Central Google Scholar
Jentsch JD, Aarde SM, Seu E (2009) Effects of atomoxetine and methylphenidate on performance of a lateralized reaction time task in rats. Psychopharmacology 202(1):497–504
Article CAS PubMed Google Scholar
Johansson B, Wentzel AP, Andréll P et al (2017) Long-term treatment with methylphenidate for fatigue after traumatic brain injury. Acta Neurol Scand 135(1):100–107
Comments (0)