Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132:1243–52.
Article CAS PubMed Google Scholar
Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.
Heo K-S, Fujiwara K, Abe J-i. Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J. 2011;75:2722–30.
Article CAS PubMed PubMed Central Google Scholar
Davies PF, Polacek DC, Handen JS, et al. A spatial approach to transcriptional profiling: mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol. 1999;17:347–51.
Article CAS PubMed Google Scholar
Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–31.
Article CAS PubMed Google Scholar
Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.
Article CAS PubMed Google Scholar
Simmons RD, Kumar S, Jo H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys. 2016;591:111–31.
Article CAS PubMed Google Scholar
Villa-Roel N, Ryu K, Jo H. Role of Biomechanical stress and mechanosensitive miRNAs in calcific aortic valve disease. In Cardiovascular Calcification and Bone Mineralization, Aikawa, E., Hutcheson, J.D., Eds. Springer International Publishing: Cham, 2020;117–35. https://doi.org/10.1007/978-3-030-46725-8_6pp.
Kumar S, Kim CW, Simmons RD, et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34:2206–16.
Article CAS PubMed PubMed Central Google Scholar
Kumar S, Kim CW, Son DJ, et al. Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo. Sci Data. 2014;1:140039.
Article CAS PubMed PubMed Central Google Scholar
Simmons RD, Kumar S, Thabet SR, et al. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. WIREs Syst Biol Med. 2016;8:378–401.
Dunn J, Thabet S, Jo H. Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:1562–9.
Article CAS PubMed PubMed Central Google Scholar
Dunn J, Qiu H, Kim S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.
Article CAS PubMed PubMed Central Google Scholar
Ni C-W, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood. 2010;116:e66–73.
Article CAS PubMed PubMed Central Google Scholar
Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285:C499–508.
Article CAS PubMed Google Scholar
Andueza A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33:108491.
van Thienen JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res. 2006;72:231–40.
Kinderlerer AR, Ali F, Johns M, et al. KLF2-dependent, shear stress-induced expression of CD59. J Biol Chem. 2008;283:14636–44.
Article CAS PubMed Google Scholar
Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282:13769–79.
Article CAS PubMed Google Scholar
Son DJ, Kumar S, Takabe W, et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.
Nam D, Ni C-W, Rezvan A, et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535–43.
Article CAS PubMed PubMed Central Google Scholar
Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress: role of c-Myc *. J Biol Chem. 2003;278:32994–9.
Article CAS PubMed Google Scholar
Jo H, Song H, Mowbray A. Role of NADPH Oxidases in disturbed flow- and BMP4- Induced inflammation and atherosclerosis. Antioxid Redox Signal. 2006;8:1609–19.
Article CAS PubMed Google Scholar
Kumar S, Williams D, Sur S, et al. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc Pharmacol. 2019;114:76–92.
Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.
Article CAS PubMed Google Scholar
Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol. 2003;91:3–6.
Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.
Article CAS PubMed PubMed Central Google Scholar
Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51.
Article CAS PubMed PubMed Central Google Scholar
Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251:788–91.
Article CAS PubMed Google Scholar
Dong ZM, Chapman SM, Brown AA, et al. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998;102:145–52.
Article CAS PubMed PubMed Central Google Scholar
Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (Icam)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E–deficient mice. J Exp Med. 2000;191:189–94.
Article CAS PubMed PubMed Central Google Scholar
Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104:503–16.
Article CAS PubMed Google Scholar
Ridker PM. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur Heart J. 2016;37:1720–2.
Mudau M, Genis A, Lochner A, et al. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23:222–31.
Article PubMed PubMed Central Google Scholar
Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.
Article CAS PubMed Google Scholar
Souilhol C, Harmsen MC, Evans PC, et al. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–77.
Article CAS PubMed Google Scholar
Chen P-Y, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125:4514–28.
Article PubMed PubMed Central Google Scholar
Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17:52–63.
van Meeteren LA, Ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347:177–86.
Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80.
Comments (0)