Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development

Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132:1243–52.

Article  CAS  PubMed  Google Scholar 

Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.

Article  PubMed  Google Scholar 

Heo K-S, Fujiwara K, Abe J-i. Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J. 2011;75:2722–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies PF, Polacek DC, Handen JS, et al. A spatial approach to transcriptional profiling: mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol. 1999;17:347–51.

Article  CAS  PubMed  Google Scholar 

Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–31.

Article  CAS  PubMed  Google Scholar 

Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.

Article  CAS  PubMed  Google Scholar 

Simmons RD, Kumar S, Jo H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys. 2016;591:111–31.

Article  CAS  PubMed  Google Scholar 

Villa-Roel N, Ryu K, Jo H. Role of Biomechanical stress and mechanosensitive miRNAs in calcific aortic valve disease. In Cardiovascular Calcification and Bone Mineralization, Aikawa, E., Hutcheson, J.D., Eds. Springer International Publishing: Cham, 2020;117–35. https://doi.org/10.1007/978-3-030-46725-8_6pp.

Kumar S, Kim CW, Simmons RD, et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34:2206–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, Kim CW, Son DJ, et al. Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo. Sci Data. 2014;1:140039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simmons RD, Kumar S, Thabet SR, et al. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. WIREs Syst Biol Med. 2016;8:378–401.

Article  CAS  Google Scholar 

Dunn J, Thabet S, Jo H. Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:1562–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunn J, Qiu H, Kim S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni C-W, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood. 2010;116:e66–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285:C499–508.

Article  CAS  PubMed  Google Scholar 

Andueza A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33:108491.

van Thienen JV, Fledderus JO, Dekker RJ, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res. 2006;72:231–40.

Article  PubMed  Google Scholar 

Kinderlerer AR, Ali F, Johns M, et al. KLF2-dependent, shear stress-induced expression of CD59. J Biol Chem. 2008;283:14636–44.

Article  CAS  PubMed  Google Scholar 

Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282:13769–79.

Article  CAS  PubMed  Google Scholar 

Son DJ, Kumar S, Takabe W, et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.

Article  PubMed  Google Scholar 

Nam D, Ni C-W, Rezvan A, et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress: role of c-Myc *. J Biol Chem. 2003;278:32994–9.

Article  CAS  PubMed  Google Scholar 

Jo H, Song H, Mowbray A. Role of NADPH Oxidases in disturbed flow- and BMP4- Induced inflammation and atherosclerosis. Antioxid Redox Signal. 2006;8:1609–19.

Article  CAS  PubMed  Google Scholar 

Kumar S, Williams D, Sur S, et al. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc Pharmacol. 2019;114:76–92.

Article  CAS  Google Scholar 

Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.

Article  CAS  PubMed  Google Scholar 

Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol. 2003;91:3–6.

Article  Google Scholar 

Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251:788–91.

Article  CAS  PubMed  Google Scholar 

Dong ZM, Chapman SM, Brown AA, et al. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998;102:145–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (Icam)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E–deficient mice. J Exp Med. 2000;191:189–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104:503–16.

Article  CAS  PubMed  Google Scholar 

Ridker PM. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur Heart J. 2016;37:1720–2.

Article  PubMed  Google Scholar 

Mudau M, Genis A, Lochner A, et al. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23:222–31.

Article  PubMed  PubMed Central  Google Scholar 

Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.

Article  CAS  PubMed  Google Scholar 

Souilhol C, Harmsen MC, Evans PC, et al. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–77.

Article  CAS  PubMed  Google Scholar 

Chen P-Y, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125:4514–28.

Article  PubMed  PubMed Central  Google Scholar 

Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17:52–63.

Article  PubMed  Google Scholar 

van Meeteren LA, Ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347:177–86.

Article  PubMed  Google Scholar 

Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80.

Comments (0)

No login
gif