Zhang Q, Xing B, Sun M, Zhou B, Ren G, Qin P. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Sci Nutr. 2020;8:4232–41. https://doi.org/10.1002/fsn3.1718
Article CAS PubMed PubMed Central Google Scholar
Hong Y-H, Huang Y-L, Liu Y-C, Tsai P-J. Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. BioMed Res Int. 2016;2016:7368797 https://doi.org/10.1155/2016/7368797
Article CAS PubMed PubMed Central Google Scholar
Guo H, Hao Y, Yang X, Ren G, Richel A. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review. Crit Rev Food Sci Nutr. 2023;63:2896–2909. https://doi.org/10.1080/10408398.2021.1982860
Article CAS PubMed Google Scholar
Guo H, Hao Y, Richel A, Everaert N, Chen Y, Liu M, et al. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. J Sci Food Agric. 2020;100:5569–76. https://doi.org/10.1002/jsfa.10609
Article CAS PubMed Google Scholar
Wei Y, Liu Y, Li Y, Wang X, Zheng Y, Xu J, et al. A novel antihypertensive pentapeptide identified in quinoa bran globulin hydrolysates: purification, in silico characterization, molecular docking with ACE and stability against different food-processing conditions. Nutrients. 2022;14:2420 https://doi.org/10.3390/nu14122420
Article CAS PubMed PubMed Central Google Scholar
Mudgil P, Kilari BP, Kamal H, Olalere OA, FitzGerald RJ, Gan C-Y, et al. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J Cereal Sci. 2020;96:103130 https://doi.org/10.1016/j.jcs.2020.103130
Li S, Du G, Shi J, Zhang L, Yue T, Yuan Y. Preparation of antihypertensive peptides from quinoa via fermentation with Lactobacillus paracasei. eFood. 2022;3:e20 https://doi.org/10.1002/efd2.20
Li J, Huo X, Zheng Y, Guo Y, Feng C. ACE-inhibitory peptides identified from Quinoa Bran Glutelin-2 Hydrolysates: In silico screening and characterization, inhibition mechanisms of ACE, coordination with zinc ions, and stability. Plant Foods Hum Nutr. 2023;78:419–25. https://doi.org/10.1007/s11130-023-01074-6
Article CAS PubMed Google Scholar
World Health Organization. Guideline for the pharmacological treatment of hypertension in adults. Geneva: World Health Organization; 2021. p. 1.
Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:P1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute. Am J Physiol Heart Circ Physiol. 2016;310:H137–52. https://doi.org/10.1152/ajpheart.00618.2015
Smith CG, Vane JR. The discovery of captopril. FASEB J 2003;17:787–9. https://doi.org/10.1096/fj.03-0093life
Fitzgerald RJ, Murray BA. Bioactive peptides and lactic fermentations. Int J Dairy Technol. 2006;59:118–25. https://doi.org/10.1111/j.1471-0307.2006.00250.x
Windarto S, Lee M-C, Nursyam H, Hsu J-L. First report of screening of novel Angiotensin-I converting enzyme inhibitory peptides derived from the red alga Acrochaetium sp. Mar Biotechnol. 2022;24:882–94. https://doi.org/10.1007/s10126-022-10152-w
Ningrum S, Sutrisno A, Hsu J-L. An exploration of angiotensin-converting enzyme (ACE) inhibitory peptides derived from gastrointestinal protease hydrolysate of milk using a modified bioassay-guided fractionation approach coupled with in silico analysis. J Dairy Sci. 2022;105:P1913–28. https://doi.org/10.3168/jds.2021-21112
Suwannapan O, Wachirattanapongmetee K, Thawornchinsombut S, Katekaew S. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from Thai jasmine rice bran protein hydrolysates. Int J Food Sci Technol. 2020;55:2441–50. https://doi.org/10.1111/ijfs.14495
Setayesh-Mehr Z, Asoodeh A. The inhibitory activity of HL-7 and HL-10 peptide from scorpion venom (Hemiscorpius lepturus) on angiotensin converting enzyme: Kinetic and docking study. Bioorg Chem. 2017;75:30–7. https://doi.org/10.1016/j.bioorg.2017.09.006
Article CAS PubMed Google Scholar
Vercruysse L, Van Camp J, Morel N, Rougé P, Herregods G, Smagghe G. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides. 2010;31:482–8. https://doi.org/10.1016/j.peptides.2009.05.029
Article CAS PubMed Google Scholar
Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-Converting Enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017;9:316 https://doi.org/10.3390/nu9040316.
Article CAS PubMed PubMed Central Google Scholar
Bhat ZF, Kumar S, Bhat HF. Antihypertensive peptides of animal origin: A review. Crit Rev Food Sci Nutr. 2017;57:566–78. https://doi.org/10.1080/10408398.2014.898241
Article CAS PubMed Google Scholar
Shih Y-H, Chen F-A, Wang L-F, Hsu J-L. Discovery and study of novel antihypertensive peptides derived from Cassia obtusifolia Seeds. J Agric Food Chem. 2019;67:7810–20. https://doi.org/10.1021/acs.jafc.9b01922
Article CAS PubMed Google Scholar
Chan KC, Issaq HJ. Fractionation of peptides by strong cation-exchange liquid chromatography. In: Zhou M, Veenstra T, editors. Proteomics for Biomarker Discovery. Totowa, NJ: Humana Press; 2013. p. 311–5. https://doi.org/10.1007/978-1-62703-360-2_23
Herraiz T. Sample preparation and reversed phase-high performance liquid chromatography analysis of food-derived peptides. Anal Chim Acta. 1997;352:119–39. https://doi.org/10.1016/S0003-2670(97)00199-2
Caldwell GW, Yan Z, Lang W, Masucci JA. The IC50 concept revisited. Curr Top Med Chem. 2012;12:1282–90. https://doi.org/10.2174/156802612800672844
Article CAS PubMed Google Scholar
Ngamsuk S, Huang T-C, Hsu J-L. ACE inhibitory activity and molecular docking of gac seed protein hydrolysate purified by HILIC and RP-HPLC. Molecules. 2020;25:4635 https://doi.org/10.3390/molecules25204635
Article CAS PubMed PubMed Central Google Scholar
Vecchi B, Añón MC. ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry. 2009;70:864–70. https://doi.org/10.1016/j.phytochem.2009.04.006
Article CAS PubMed Google Scholar
Pujiastuti DY, Shih Y-H, Chen W-L, Sukoso, Hsu J-L. Screening of angiotensin-I converting enzyme inhibitory peptides derived from soft-shelled turtle yolk using two orthogonal bioassay-guided fractionations. J Funct Foods. 2017;28:36–47. https://doi.org/10.1016/j.jff.2016.10.029
Nong NTP, Sutopo CCY, Hung W-T, Wu P-H, Hsu J-L. The molecular docking and inhibition kinetics of Angiotensin I-Converting Enzyme inhibitory peptides derived from soft-shelled turtle yolk. Appl Sci. 2022;12:12340 https://doi.org/10.3390/app122312340
Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature. 2003;421:551–4. https://doi.org/10.1038/nature01370
Article CAS PubMed Google Scholar
Priyanto AD, Doerksen RJ, Chang C-I, Sung W-C, Widjanarko SB, Kusnadi J, et al. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteom 2015;128:424–35. https://doi.org/10.1016/j.jprot.2015.08.018
Aluko R. Bioactive Peptides. Functional Foods and Nutraceuticals. New York, NY: Springer New York; 2012. p. 37–61. https://doi.org/10.1007/978-1-4614-3480-1_3
Lee N-Y, Cheng J-T, Enomoto T, Nakano Y. One peptide derived from hen ovotransferrin as pro-drug to inhibit angiotensin converting enzyme. J Food Drug Anal. 2006;14:10 https://doi.org/10.38212/2224-6614.2505
Sutopo CCY, Aznam N, Arianingrum R, Hsu J-L. Screening potential hypertensive peptides using two consecutive bioassay-guided SPE fractionations and identification of an ACE inhibitory peptide, DHSTAVW (DW7), derived from pearl garlic protein hydrolysate. Peptides. 2023;167:171046 https://doi.org/10.1016/j.peptides.2023.171046
Sutopo CCY, Sutrisno A, Wang L-F, Hsu J-L. Identification of a potent Angiotensin-I converting enzyme inhibitory peptide from Black cumin seed hydrolysate using orthogonal bioassay-guided fractionations coupled with in silico screening. Process Biochem. 2020;95:204–13. https://doi.org/10.1016/j.procbio.2020.02.010
Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci. 2019;20:5978 https://doi.org/10.3390/ijms20235978
Article CAS PubMed PubMed Central Google Scholar
Mooney C, Haslam NJ, Pollastri G, Shields DC. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLOS ONE. 2012;7:e45012 https://doi.org/10.1371/journal.pone.0045012
Comments (0)