Chen H, Gao Y, Wang A, Zhou X, Zheng Y, Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem. 2015;92:648–55. https://doi.org/10.1016/j.ejmech.2015.01.031
Article CAS PubMed PubMed Central Google Scholar
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–29. https://doi.org/10.1038/nrd4510
Article CAS PubMed Google Scholar
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, et al. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem. 2022;37:2452–577. https://doi.org/10.1080/14756366.2022.2115035
Article CAS PubMed PubMed Central Google Scholar
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16. https://doi.org/10.1038/s41573-020-00114-z
Article CAS PubMed PubMed Central Google Scholar
Ahmad Dar A, Sangwan PL, Kumar A. Chromatography: An important tool for drug discovery. J Sep Sci. 2020;43:105–19. https://doi.org/10.1002/jssc.201900656
Article CAS PubMed Google Scholar
Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat. 2008;111:419–27. https://doi.org/10.1007/s10549-007-9798-y
Article CAS PubMed Google Scholar
Kawasaki BT, Hurt EM, Kalathur M, Duhagon MA, Milner JA, Kim YS, et al. Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: An integrated molecular profiling approach. Prostate. 2009;69:827–37. https://doi.org/10.1002/pros.20931
Article CAS PubMed PubMed Central Google Scholar
Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013;18:894–905. https://doi.org/10.1016/j.drudis.2013.05.005
Article CAS PubMed Google Scholar
Dell’Agli M, Galli GV, Bosisio E, D’Ambrosio M. Inhibition of NF-kB and metalloproteinase-9 expression and secretion by parthenolide derivatives. Bioorg Med Chem Lett. 2009;19:1858–60. https://doi.org/10.1016/j.bmcl.2009.02.080
Article CAS PubMed Google Scholar
Gopal YN, Arora TS, Van Dyke MW. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. Chem Biol. 2007;14:813–23. https://doi.org/10.1016/j.chembiol.2007.06.007
Article CAS PubMed Google Scholar
Kim YJ, Choi MH, Hong ST, Bae YM. Resistance of cholangiocarcinoma cells to parthenolide-induced apoptosis by the excretory-secretory products of Clonorchis sinensis. Parasitol Res. 2009;104:1011–16. https://doi.org/10.1007/s00436-008-1283-y
Riganti C, Doublier S, Viarisio D, Miraglia E, Pescarmona G, Ghigo D, et al. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br J Pharmacol. 2009;156:1054–66. https://doi.org/10.1111/j.1476-5381.2009.00117.x
Article CAS PubMed PubMed Central Google Scholar
Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F, et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 2008;111:5654–62. https://doi.org/10.1182/blood-2007-11-126003
Article CAS PubMed PubMed Central Google Scholar
Kim YR, Eom JI, Kim SJ, Jeung HK, Cheong JW, Kim JS, et al. Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Exp Ther. 2010;335:389–400. https://doi.org/10.1124/jpet.110.169367
Article CAS PubMed Google Scholar
Nasim S, Crooks PA. Antileukemic activity of aminoparthenolide analogs. Bioorg Med Chem Lett. 2008;18:3870–3. https://doi.org/10.1016/j.bmcl.2008.06.050
Article CAS PubMed Google Scholar
De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441 https://doi.org/10.1038/bcj.2016.50
Article PubMed PubMed Central Google Scholar
Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105:4163–9. https://doi.org/10.1182/blood-2004-10-4135
Article CAS PubMed PubMed Central Google Scholar
Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110:4427–35. https://doi.org/10.1182/blood-2007-05-090621
Article CAS PubMed PubMed Central Google Scholar
Neukirch H, Kaneider NC, Wiedermann CJ, Guerriero A, D’Ambrosio M. Parthenolide and its photochemically synthesized 1(10)Z isomer: chemical reactivity and structure–activity relationship studies in human leucocyte chemotaxis. Bioorg Med Chem. 2003;11:1503–10. https://doi.org/10.1016/S0968-0896(02)00553-9
Article CAS PubMed Google Scholar
Ji Q, Ding YH, Sun Y, Zhang Y, Gao HE, Song HN, et al. Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells. Oncotarget. 2016;7:65012–23. https://doi.org/10.18632/oncotarget.11342
Article PubMed PubMed Central Google Scholar
Nasim S, Pei S, Hagen FK, Jordan CT, Crooks PA. Melampomagnolide B: A new antileukemic sesquiterpene. Bioorg Med Chem. 2011;19:1515–9. https://doi.org/10.1016/j.bmc.2010.12.045
Article CAS PubMed Google Scholar
Cai H, He X, Yang C. Costunolide promotes imatinib-induced apoptosis in chronic myeloid leukemia cells via the Bcr/Abl-Stat5 pathway. Phytother Res. 2018;32:1764–9. https://doi.org/10.1002/ptr.6106
Article CAS PubMed Google Scholar
Kempema AM, Widen JC, Hexum JK, Andrews TE, Wang D, Rathe SK, et al. Synthesis and antileukemic activities of C1-C10-modified parthenolide analogues. Bioorg Med Chem. 2015;23:4737–45. https://doi.org/10.1016/j.bmc.2015.05.037
Article CAS PubMed PubMed Central Google Scholar
Nakshatri H, Appaiah HN, Anjanappa M, Gilley D, Tanaka H, Badve S, et al. NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis. 2015;6:e1608 https://doi.org/10.1038/cddis.2014.569
Article CAS PubMed PubMed Central Google Scholar
Neelakantan S, Nasim S, Guzman ML, Jordan CT, Crooks PA. Aminoparthenolides as novel anti-leukemic agents: Discovery of the NF-kappaB inhibitor, DMAPT (LC-1). Bioorg Med Chem Lett. 2009;19:4346–9. https://doi.org/10.1016/j.bmcl.2009.05.092
Article CAS PubMed Google Scholar
Zhang Q, Lu Y, Ding Y, Zhai J, Ji Q, Ma W, et al. Guaianolide Sesquiterpene Lactones, a Source To Discover Agents That Selectively Inhibit Acute Myelogenous Leukemia Stem and Progenitor Cells. J Med Chem. 2012;55:8757–69. https://doi.org/10.1021/jm301064b
Article CAS PubMed Google Scholar
Le Tourneau C, Delord JP, Kotecki N, Borcoman E, Gomez-Roca C, Hescot S, et al. A Phase 1 dose-escalation study to evaluate safety, pharmacokinetics and pharmacodynamics of AsiDNA, a first-in-class DNA repair inhibitor, administered intravenously in patients with advanced solid tumours. Br J Cancer. 2020;123:1481–9. https://doi.org/10.1038/s41416-020-01028-8
Article CAS PubMed PubMed Central Google Scholar
Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103. https://doi.org/10.1379/csc-99r.1
Article CAS PubMed PubMed Central Google Scholar
Kupchan SM, Fessler DC, Eakin MA, Giacobbe TJ. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science. 1970;168:376–8. https://doi.org/10.1126/science.168.3929.376
Article CAS PubMed Google Scholar
Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol. 2008;21:117–28. https://doi.org/10.1021/tx700235t
Article CAS PubMed Google Scholar
Shin M, McGowan A, DiNatale GJ, Chiramanewong T, Cai T, Connor RE. Hsp72 Is an Intracellular Target of the α,β-Unsaturated Sesquiterpene Lactone, Parthenolide. ACS Omega. 2017;2:7267–74. https://doi.org/10.1021/acsomega.7b00954
Comments (0)