Barkati S, Ndao M, Libman M. Cutaneous leishmaniasis in the 21st century: from the laboratory to the bedside. Curr Opin Infect Dis. 2019;32:419–25. https://doi.org/10.1097/QCO.0000000000000579
Article CAS PubMed Google Scholar
Osuolale O. Visceral and tegumentary leishmaniasis. In: Christodoulides M, editor Vaccines for neglected pathogens: strategies, achievements and challenges: focus on leprosy, leishmaniasis, melioidosis and tuberculosis. Cham: Springer International Publishing; 2023. p. 235–61. https://doi.org/10.1007/978-3-031-24355-4
WHO. Leishmaniasis. 2023. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Accessed 30 Jun 2023.
de Vries HJC, Schallig HD. Cutaneous leishmaniasis: a 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022;23:823–40. https://doi.org/10.1007/s40257-022-00726-8
Article PubMed PubMed Central Google Scholar
de Vries HJC, Reedijk SH, Schallig HDFH. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16:99–109. https://doi.org/10.1007/s40257-015-0114-z
Article PubMed PubMed Central Google Scholar
Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop. 2021;221:105988. https://doi.org/10.1016/j.actatropica.2021.105988
Article CAS PubMed Google Scholar
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104:8965–77. https://doi.org/10.1007/s00253-020-10856-w
Article CAS PubMed Google Scholar
Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J. Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp. 2007;55:315–27. https://doi.org/10.1007/s00005-007-0039-1
Dehsheikh AB, Sourestani MM, Dehsheikh PB, Mottaghipisheh J, Vitalini S, Iriti M. Monoterpenes: essential oil components with valuable features. Mini Rev Med Chem. 2020;20:958–74. https://doi.org/10.2174/1389557520666200122144703
Article CAS PubMed Google Scholar
Nyamwihura RJ, Ogungbe IV. The pinene scaffold: its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Adv. 12:11346–75. https://doi.org/10.1039/d2ra00423b
Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L D Jayaweera S, A Dias D, et al. Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules. 2019;9:738. https://doi.org/10.3390/biom9110738
Article CAS PubMed PubMed Central Google Scholar
da Silva Rivas AC, Lopes PM, de Azevedo Barros MM, Costa Machado DC, Alviano CS, Alviano DS. Biological activities of α-pinene and β-pinene enantiomers. Molecules. 2012;17:6305–16. https://doi.org/10.3390/molecules17066305
Article CAS PubMed Central Google Scholar
de Sousa Eduardo L, Farias TC, Ferreira SB, Ferreira PB, Lima ZN, Ferreira SB. Antibacterial activity and time-kill kinetics of positive enantiomer of α-pinene against strains of Staphylococcus aureus and Escherichia coli. Curr Top Med Chem. 2018;18:917–24. https://doi.org/10.2174/1568026618666180712093914
Article CAS PubMed Google Scholar
de Macêdo Andrade AC, Rosalen PL, Freires IA, Scotti L, Scotti MT, Aquino SG, et al. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Curr Top Med Chem. 2018;18:2481–90. https://doi.org/10.2174/1568026618666181115103104
Article CAS PubMed Google Scholar
Sikkema J, de Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994;269:8022–8. https://doi.org/10.1016/S0021-9258(17)37154-5
Article CAS PubMed Google Scholar
Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, et al. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem. 2007;55:6300–8. https://doi.org/10.1021/jf070094x
Article CAS PubMed Google Scholar
Brooks WH, Guida WC, Daniel KG. The significance of chirality in drug design and development. Curr Top Med Chem. 2011;11:760–70. https://doi.org/10.2174/156802611795165098
Article CAS PubMed PubMed Central Google Scholar
Le TB, Beaufay C, Bonneau N, Mingeot-Leclercq M-P, Quetin-Leclercq J. Anti-protozoal activity of essential oils and their constituents against Leishmania. Plasmodium Trypanosoma Phytochimie. 2018;1:1–33.
Leal SM, Pino N, Stashenko EE, Martínez JR, Escobar P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J Ess Oil Res. 2013;25:512–9. https://doi.org/10.1080/10412905.2013.820669
Essid R, Rahali FZ, Msaada K, Sghair I, Hammami M, Bouratbine A, et al. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind Crops Prod. 2015;77:795–802. https://doi.org/10.1016/j.indcrop.2015.09.049
Mahmoudvand H, Ezzatkhah F, Sharififar F, Sharifi I, Dezaki ES. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of Myrtus communis L. Korean J Parasitol. 2015;53:21. https://doi.org/10.3347/kjp.2015.53.1.21
Article CAS PubMed PubMed Central Google Scholar
Rodrigues KA, da F, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, Carvalho FA, de A. Syzygium cumini (L.) skeels essential oil and its major constituent α-pinene exhibit anti-leishmania activity through immunomodulation in vitro. J Ethnopharmacol. 2015;160:32–40. https://doi.org/10.1016/j.jep.2014.11.024
Article CAS PubMed Google Scholar
Ramos EHS, Moraes MM, Nerys LL, de A, Nascimento SC, Militão GCG, de Figueiredo RCBQ, et al. Chemical composition, leishmanicidal and cytotoxic activities of the essential oils from Mangifera indica L. var. Rosa and Espada. Biomed Res Int. 2014;2014:734946. https://doi.org/10.1155/2014/734946
Article CAS PubMed PubMed Central Google Scholar
Hou J, Zhang Y, Zhu Y, Zhou B, Ren C, Liang S, et al. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Med Sci Monit. 2019;25:6631–8. https://doi.org/10.12659/MSM.916419
Article CAS PubMed PubMed Central Google Scholar
Shahina Z, Al Homsi R, Price JDW, Whiteway M, Sultana T, Dahms TES. Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS ONE. 2022;17:e0277097. https://doi.org/10.1371/journal.pone.0277097
Article CAS PubMed PubMed Central Google Scholar
Bomfim de Barros D, de Oliveira E Lima L, Alves da Silva L, Cavalcante Fonseca M, Ferreira RC, Diniz Neto H, et al. α-Pinene: docking study, cytotoxicity, mechanism of action, and anti-biofilm effect against Candida albicans. Antibiotics. 2023;12:480. https://doi.org/10.3390/antibiotics12030480
Article CAS PubMed PubMed Central Google Scholar
Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, et al. Anti-Inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod. 2014;77:264–9. https://doi.org/10.1021/np400828x
Article CAS PubMed Google Scholar
Herrmann F, Wink M. Synergistic interactions of saponins and monoterpenes in HeLa cells, Cos7 cells and in erythrocytes. Phytomedicine. 2011;18:1191–6. https://doi.org/10.1016/j.phymed.2011.08.070
Article CAS PubMed Google Scholar
Halbandge SD, Mortale SP, Jadhav AK, Kharat K, Karuppayil SM. Differential sensitivities of various growth modes of Candida albicans to sixteen molecules of plant origin. J Pharmacog Phytochem. 2017;6:306–18.
Amin K, Dannenfelser R-M. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci. 2006;95:1173–6. https://doi.org/10.1002/jps.20627
Article CAS PubMed Google Scholar
Katsuno K, Burrows JN, Duncan K, Hooft van Huijsduijnen R, Kaneko T, Kita K, et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov. 2015;14:751–8. https://doi.org/10.1038/nrd4683
Article CAS PubMed Google Scholar
Ninh The S, Le Tuan A, Dinh Thi Thu T, Nguyen Dinh L, Tran Thi T, Pham-The H. Essential oils of Uvaria boniana - chemical composition, in vitro bioactivity, docking, and in silico ADMET profiling of selective major compounds. Z Naturforsch C J Biosci. 2022;77:207–18. https://doi.org/10.1515/znc-2021-0111
Article CAS PubMed Google Scholar
Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, et al. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun. 2011;411:449–54. https://doi.org/10.1016/j.bbrc.2011.06.176
Article CAS PubMed Google Scholar
Garcia AR, Amaral ACF, Maria ACB, Paz MM, Amorim MMB, Chaves FCM, et al. Antileishmanial screening, cytotoxicity, and chemical composition of essential oils: a special focus on Piper callosum Essential Oil. Chem Biodivers. 2023;20:e202200689. https://doi.org/10.1002/cbdv.202200689
Article CAS PubMed Google Scholar
Nakanishi M, Hino M, Yoshimura M, Amakura Y, Nomoto H. Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus c
Comments (0)