Enantioselectivity of pinene against Leishmania amazonensis

Barkati S, Ndao M, Libman M. Cutaneous leishmaniasis in the 21st century: from the laboratory to the bedside. Curr Opin Infect Dis. 2019;32:419–25. https://doi.org/10.1097/QCO.0000000000000579

Article  CAS  PubMed  Google Scholar 

Osuolale O. Visceral and tegumentary leishmaniasis. In: Christodoulides M, editor Vaccines for neglected pathogens: strategies, achievements and challenges: focus on leprosy, leishmaniasis, melioidosis and tuberculosis. Cham: Springer International Publishing; 2023. p. 235–61. https://doi.org/10.1007/978-3-031-24355-4

WHO. Leishmaniasis. 2023. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Accessed 30 Jun 2023.

de Vries HJC, Schallig HD. Cutaneous leishmaniasis: a 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022;23:823–40. https://doi.org/10.1007/s40257-022-00726-8

Article  PubMed  PubMed Central  Google Scholar 

de Vries HJC, Reedijk SH, Schallig HDFH. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16:99–109. https://doi.org/10.1007/s40257-015-0114-z

Article  PubMed  PubMed Central  Google Scholar 

Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop. 2021;221:105988. https://doi.org/10.1016/j.actatropica.2021.105988

Article  CAS  PubMed  Google Scholar 

Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104:8965–77. https://doi.org/10.1007/s00253-020-10856-w

Article  CAS  PubMed  Google Scholar 

Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J. Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp. 2007;55:315–27. https://doi.org/10.1007/s00005-007-0039-1

Article  CAS  Google Scholar 

Dehsheikh AB, Sourestani MM, Dehsheikh PB, Mottaghipisheh J, Vitalini S, Iriti M. Monoterpenes: essential oil components with valuable features. Mini Rev Med Chem. 2020;20:958–74. https://doi.org/10.2174/1389557520666200122144703

Article  CAS  PubMed  Google Scholar 

Nyamwihura RJ, Ogungbe IV. The pinene scaffold: its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Adv. 12:11346–75. https://doi.org/10.1039/d2ra00423b

Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L D Jayaweera S, A Dias D, et al. Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules. 2019;9:738. https://doi.org/10.3390/biom9110738

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva Rivas AC, Lopes PM, de Azevedo Barros MM, Costa Machado DC, Alviano CS, Alviano DS. Biological activities of α-pinene and β-pinene enantiomers. Molecules. 2012;17:6305–16. https://doi.org/10.3390/molecules17066305

Article  CAS  PubMed Central  Google Scholar 

de Sousa Eduardo L, Farias TC, Ferreira SB, Ferreira PB, Lima ZN, Ferreira SB. Antibacterial activity and time-kill kinetics of positive enantiomer of α-pinene against strains of Staphylococcus aureus and Escherichia coli. Curr Top Med Chem. 2018;18:917–24. https://doi.org/10.2174/1568026618666180712093914

Article  CAS  PubMed  Google Scholar 

de Macêdo Andrade AC, Rosalen PL, Freires IA, Scotti L, Scotti MT, Aquino SG, et al. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Curr Top Med Chem. 2018;18:2481–90. https://doi.org/10.2174/1568026618666181115103104

Article  CAS  PubMed  Google Scholar 

Sikkema J, de Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994;269:8022–8. https://doi.org/10.1016/S0021-9258(17)37154-5

Article  CAS  PubMed  Google Scholar 

Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, et al. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem. 2007;55:6300–8. https://doi.org/10.1021/jf070094x

Article  CAS  PubMed  Google Scholar 

Brooks WH, Guida WC, Daniel KG. The significance of chirality in drug design and development. Curr Top Med Chem. 2011;11:760–70. https://doi.org/10.2174/156802611795165098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le TB, Beaufay C, Bonneau N, Mingeot-Leclercq M-P, Quetin-Leclercq J. Anti-protozoal activity of essential oils and their constituents against Leishmania. Plasmodium Trypanosoma Phytochimie. 2018;1:1–33.

Google Scholar 

Leal SM, Pino N, Stashenko EE, Martínez JR, Escobar P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J Ess Oil Res. 2013;25:512–9. https://doi.org/10.1080/10412905.2013.820669

Article  CAS  Google Scholar 

Essid R, Rahali FZ, Msaada K, Sghair I, Hammami M, Bouratbine A, et al. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind Crops Prod. 2015;77:795–802. https://doi.org/10.1016/j.indcrop.2015.09.049

Article  CAS  Google Scholar 

Mahmoudvand H, Ezzatkhah F, Sharififar F, Sharifi I, Dezaki ES. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of Myrtus communis L. Korean J Parasitol. 2015;53:21. https://doi.org/10.3347/kjp.2015.53.1.21

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues KA, da F, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, Carvalho FA, de A. Syzygium cumini (L.) skeels essential oil and its major constituent α-pinene exhibit anti-leishmania activity through immunomodulation in vitro. J Ethnopharmacol. 2015;160:32–40. https://doi.org/10.1016/j.jep.2014.11.024

Article  CAS  PubMed  Google Scholar 

Ramos EHS, Moraes MM, Nerys LL, de A, Nascimento SC, Militão GCG, de Figueiredo RCBQ, et al. Chemical composition, leishmanicidal and cytotoxic activities of the essential oils from Mangifera indica L. var. Rosa and Espada. Biomed Res Int. 2014;2014:734946. https://doi.org/10.1155/2014/734946

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou J, Zhang Y, Zhu Y, Zhou B, Ren C, Liang S, et al. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Med Sci Monit. 2019;25:6631–8. https://doi.org/10.12659/MSM.916419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shahina Z, Al Homsi R, Price JDW, Whiteway M, Sultana T, Dahms TES. Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS ONE. 2022;17:e0277097. https://doi.org/10.1371/journal.pone.0277097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bomfim de Barros D, de Oliveira E Lima L, Alves da Silva L, Cavalcante Fonseca M, Ferreira RC, Diniz Neto H, et al. α-Pinene: docking study, cytotoxicity, mechanism of action, and anti-biofilm effect against Candida albicans. Antibiotics. 2023;12:480. https://doi.org/10.3390/antibiotics12030480

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, et al. Anti-Inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod. 2014;77:264–9. https://doi.org/10.1021/np400828x

Article  CAS  PubMed  Google Scholar 

Herrmann F, Wink M. Synergistic interactions of saponins and monoterpenes in HeLa cells, Cos7 cells and in erythrocytes. Phytomedicine. 2011;18:1191–6. https://doi.org/10.1016/j.phymed.2011.08.070

Article  CAS  PubMed  Google Scholar 

Halbandge SD, Mortale SP, Jadhav AK, Kharat K, Karuppayil SM. Differential sensitivities of various growth modes of Candida albicans to sixteen molecules of plant origin. J Pharmacog Phytochem. 2017;6:306–18.

CAS  Google Scholar 

Amin K, Dannenfelser R-M. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci. 2006;95:1173–6. https://doi.org/10.1002/jps.20627

Article  CAS  PubMed  Google Scholar 

Katsuno K, Burrows JN, Duncan K, Hooft van Huijsduijnen R, Kaneko T, Kita K, et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov. 2015;14:751–8. https://doi.org/10.1038/nrd4683

Article  CAS  PubMed  Google Scholar 

Ninh The S, Le Tuan A, Dinh Thi Thu T, Nguyen Dinh L, Tran Thi T, Pham-The H. Essential oils of Uvaria boniana - chemical composition, in vitro bioactivity, docking, and in silico ADMET profiling of selective major compounds. Z Naturforsch C J Biosci. 2022;77:207–18. https://doi.org/10.1515/znc-2021-0111

Article  CAS  PubMed  Google Scholar 

Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, et al. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun. 2011;411:449–54. https://doi.org/10.1016/j.bbrc.2011.06.176

Article  CAS  PubMed  Google Scholar 

Garcia AR, Amaral ACF, Maria ACB, Paz MM, Amorim MMB, Chaves FCM, et al. Antileishmanial screening, cytotoxicity, and chemical composition of essential oils: a special focus on Piper callosum Essential Oil. Chem Biodivers. 2023;20:e202200689. https://doi.org/10.1002/cbdv.202200689

Article  CAS  PubMed  Google Scholar 

Nakanishi M, Hino M, Yoshimura M, Amakura Y, Nomoto H. Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus c

Comments (0)

No login
gif