Outsmarting trogocytosis to boost CAR NK/T cell therapy

Qiao J, Liu Z, Fu YX. Adapting conventional cancer treatment for immunotherapy. J Mol Med (Berl). 2016;94(5):489–95.

Article  CAS  PubMed  Google Scholar 

Birdi HK et al. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J Immunother Cancer, 2021. 9(2).

Mirzaei HR, et al. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: challenges and clinical applications. Front Immunol. 2017;8:1850.

Article  PubMed  Google Scholar 

Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khawar MB, Sun H. CAR-NK cells: from natural basis to design for kill. Front Immunol. 2021;12:707542.

Article  CAS  PubMed Central  Google Scholar 

Kankeu Fonkoua LA, et al. CAR T cell therapy and the Tumor microenvironment: current challenges and opportunities. Mol Ther Oncolytics. 2022;25:69–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–26.

Article  CAS  PubMed  Google Scholar 

Zheng S, Asnani M, Thomas-Tikhonenko A. Escape from ALL-CARTaz: Leukemia Immunoediting in the age of chimeric Antigen receptors. Cancer J. 2019;25(3):217–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michaelides S et al. Migratory Engineering of T cells for Cancer Therapy. Vaccines (Basel), 2022. 10(11).

Vyas M, Müller R. Pogge Von Strandmann, Antigen loss variants: catching hold of escaping foes. Front Immunol. 2017;8:175.

Article  PubMed  PubMed Central  Google Scholar 

Nakayama M et al. Shaping of T cell functions by Trogocytosis. Cells, 2021. 10(5).

Joly E. H.D., What is trogocytosis and what is its purpose? Nat Immunol, 2003. 4(9).

Schoutrop E, et al. Trogocytosis and fratricide killing impede MSLN-directed CAR T cell functionality. Oncoimmunology. 2022;11(1):2093426.

Article  PubMed  PubMed Central  Google Scholar 

Trambas CM. G.G., Delivering the kiss of death. Nat Immunol, 2003. 399–403.

Steele S et al. Trogocytosis-associated cell to cell Spread of Intracellular Bacterial Pathogens Elife, 2016. 5.

Li Y, et al. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and Tumor Escape. Nat Med. 2022;28(10):2133–44.

Article  PubMed  PubMed Central  Google Scholar 

Miyake K, Karasuyama H. The role of trogocytosis in the modulation of Immune Cell functions. Cells, 2021. 10(5).

Hudrisier D, et al. Cutting Edge: CTLs rapidly capture membrane fragments from Target cells in a TCR Signaling-Dependent Manner1. J Immunol. 2001;166(6):3645–9.

Article  CAS  PubMed  Google Scholar 

Zhao S, et al. Gnawing between cells and cells in the Immune System: friend or foe? A review of trogocytosis. Frontiers in Immunology; 2022. p. 13.

Matlung HL, et al. Neutrophils kill antibody-opsonized Cancer cells by Trogoptosis. Cell Rep. 2018;23(13):3946–3959e6.

Article  CAS  Google Scholar 

Ahmed KA, et al. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol. 2008;5(4):261–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura K, et al. NK-cell fratricide: dynamic crosstalk between NK and cancer cells. Oncoimmunology. 2013;2(11):e26529.

Article  PubMed  PubMed Central  Google Scholar 

Rechavi O, et al. Intercellular transfer of oncogenic H-Ras at the immunological synapse. PLoS ONE. 2007;2(11):e1204.

Article  PubMed  PubMed Central  Google Scholar 

Hamieh M, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen Escape. Nature. 2019;568(7750):112–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyoda T et al. Natural killer T and natural killer cell-based immunotherapy strategies targeting Cancer. Biomolecules, 2023. 13(2).

Nakamura K, et al. Fratricide of natural killer cells dressed with tumor-derived NKG2D ligand. Proc Natl Acad Sci U S A. 2013;110(23):9421–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogasawara K, Hsin HJ, Chikuma H, Bour-Jordan S, Chen H, Pertel T, Carnaud T, Bluestone C, Lanier JA. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity. 2003;18:41–51.

Article  CAS  PubMed  Google Scholar 

Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage Nature, 2002. 419(6908): p. 729 – 34.

Alvarez M et al. Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight, 2019. 5(14).

Brennan K, et al. Human natural killer cell expression of ULBP2 is associated with a mature functional phenotype. Hum Immunol. 2016;77(10):876–85.

Article  CAS  PubMed  Google Scholar 

Miner CA, et al. Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive. J Immunol. 2015;194(4):1945–53.

Article  CAS  PubMed  Google Scholar 

Bolanos FD, Tripathy SK. Activation receptor-induced tolerance of mature NK cells in vivo requires signaling through the receptor and is reversible. J Immunol. 2011;186(5):2765–71.

Article  CAS  PubMed  Google Scholar 

Mazumdar B, Bolanos FD, Tripathy SK. Viral Infection transiently reverses activation receptor-mediated NK cell hyporesponsiveness in an MHC class I-independent mechanism. Eur J Immunol. 2013;43(5):1345–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasim MS, Hodgins MM, Vulpis JJ, Makinson E, Asif OJ, Shih S, Scheer HY, MacMillan AK, Alonso O, Burke FG, Cook KP, Li DP, Petrucci R, Santoni MT, Fallon A, Sharpe PG, Sciumè AH, Veillette G, Zingoni A, Gray A, McCurdy DA, Ardolino A. M., When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Sci Adv, 2022. 8(15).

Carosella ED et al. HLA-G Molecules: from Maternal–Fetal Tolerance to Tissue Acceptance. 2003. p. 199–252.

Rouas-Freiss N, et al. HLA-G proteins in cancer: do they provide Tumor cells with an Escape mechanism? Cancer Res. 2005;65(22):10139–44.

Article  CAS  PubMed  Google Scholar 

Riteau B, et al. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166(8):5018–26.

Article  CAS  PubMed  Google Scholar 

Caumartin J, et al. Trogocytosis-based generation of suppressive NK cells. EMBO J. 2007;26(5):1423–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama M, et al. Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4 + T cells. Proc Natl Acad Sci U S A. 2011;108(45):18360–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordy JT, et al. IFNalpha and 5-Aza-2’-deoxycytidine combined with a dendritic-cell targeting DNA vaccine alter Tumor immune cell infiltration in the B16F10 Melanoma model. Front Immunol. 2022;13:1074644.

Article  CAS  PubMed  Google Scholar 

Van Hoof M, Claes S, Proj M, Van Loy T, Schols D, Gobec S, Dehaen W, De Jonghe S. Optimization of triazolo[4,5-d]pyrimidines towards human CC chemokine receptor 7 (CCR7) antagonists European journal of medicinal chemistry, 2023. 251.

Helge Wiig aMAS. Interstitial fluid and Lymph Formation and Transport: physiological regulation and roles in inflammation and Cancer. Physiol Rev, 2012.

Marcenaro E, et al. KIR2DS1-dependent acquisition of CCR7 and migratory properties by human NK cells interacting with allogeneic HLA-C2 + DCs or T-cell blasts. Blood. 2013;121(17):3396–401.

Article  CAS  PubMed  Google Scholar 

Pesce S et al. Uptake of CCR7 by KIR2DS4(+) NK cells is induced upon recognition of certain HLA-C alleles J Immunol Res, 2015. 2015: p. 754373.

Gutierrez-Lopez MD, et al. The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci. 2011;68(19):3275–92.

Article  CAS  PubMed  Google Scholar 

Lorico A, et al. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood). 2021;246(9):1121–38.

Article  CAS  Google Scholar 

Reyes R, et al. Tetraspanin CD9: a Key Regulator of Cell Adhesion in the Immune System. Front Immunol. 2018;9:863.

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez VD, et al. High-grade serous ovarian Tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep. 2021;36(9):109632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tatari-Calderone Z, et al. Acquisition of CD80 by human T cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. J Immunol. 2002;169(11):6162–9.

Article  CAS  PubMed 

Comments (0)

No login
gif