Qiao J, Liu Z, Fu YX. Adapting conventional cancer treatment for immunotherapy. J Mol Med (Berl). 2016;94(5):489–95.
Article CAS PubMed Google Scholar
Birdi HK et al. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J Immunother Cancer, 2021. 9(2).
Mirzaei HR, et al. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: challenges and clinical applications. Front Immunol. 2017;8:1850.
Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98.
Article CAS PubMed PubMed Central Google Scholar
Khawar MB, Sun H. CAR-NK cells: from natural basis to design for kill. Front Immunol. 2021;12:707542.
Article CAS PubMed Central Google Scholar
Kankeu Fonkoua LA, et al. CAR T cell therapy and the Tumor microenvironment: current challenges and opportunities. Mol Ther Oncolytics. 2022;25:69–77.
Article CAS PubMed PubMed Central Google Scholar
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.
Article CAS PubMed PubMed Central Google Scholar
Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–26.
Article CAS PubMed Google Scholar
Zheng S, Asnani M, Thomas-Tikhonenko A. Escape from ALL-CARTaz: Leukemia Immunoediting in the age of chimeric Antigen receptors. Cancer J. 2019;25(3):217–22.
Article CAS PubMed PubMed Central Google Scholar
Michaelides S et al. Migratory Engineering of T cells for Cancer Therapy. Vaccines (Basel), 2022. 10(11).
Vyas M, Müller R. Pogge Von Strandmann, Antigen loss variants: catching hold of escaping foes. Front Immunol. 2017;8:175.
Article PubMed PubMed Central Google Scholar
Nakayama M et al. Shaping of T cell functions by Trogocytosis. Cells, 2021. 10(5).
Joly E. H.D., What is trogocytosis and what is its purpose? Nat Immunol, 2003. 4(9).
Schoutrop E, et al. Trogocytosis and fratricide killing impede MSLN-directed CAR T cell functionality. Oncoimmunology. 2022;11(1):2093426.
Article PubMed PubMed Central Google Scholar
Trambas CM. G.G., Delivering the kiss of death. Nat Immunol, 2003. 399–403.
Steele S et al. Trogocytosis-associated cell to cell Spread of Intracellular Bacterial Pathogens Elife, 2016. 5.
Li Y, et al. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and Tumor Escape. Nat Med. 2022;28(10):2133–44.
Article PubMed PubMed Central Google Scholar
Miyake K, Karasuyama H. The role of trogocytosis in the modulation of Immune Cell functions. Cells, 2021. 10(5).
Hudrisier D, et al. Cutting Edge: CTLs rapidly capture membrane fragments from Target cells in a TCR Signaling-Dependent Manner1. J Immunol. 2001;166(6):3645–9.
Article CAS PubMed Google Scholar
Zhao S, et al. Gnawing between cells and cells in the Immune System: friend or foe? A review of trogocytosis. Frontiers in Immunology; 2022. p. 13.
Matlung HL, et al. Neutrophils kill antibody-opsonized Cancer cells by Trogoptosis. Cell Rep. 2018;23(13):3946–3959e6.
Ahmed KA, et al. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol. 2008;5(4):261–9.
Article CAS PubMed PubMed Central Google Scholar
Nakamura K, et al. NK-cell fratricide: dynamic crosstalk between NK and cancer cells. Oncoimmunology. 2013;2(11):e26529.
Article PubMed PubMed Central Google Scholar
Rechavi O, et al. Intercellular transfer of oncogenic H-Ras at the immunological synapse. PLoS ONE. 2007;2(11):e1204.
Article PubMed PubMed Central Google Scholar
Hamieh M, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen Escape. Nature. 2019;568(7750):112–6.
Article CAS PubMed PubMed Central Google Scholar
Iyoda T et al. Natural killer T and natural killer cell-based immunotherapy strategies targeting Cancer. Biomolecules, 2023. 13(2).
Nakamura K, et al. Fratricide of natural killer cells dressed with tumor-derived NKG2D ligand. Proc Natl Acad Sci U S A. 2013;110(23):9421–6.
Article CAS PubMed PubMed Central Google Scholar
Ogasawara K, Hsin HJ, Chikuma H, Bour-Jordan S, Chen H, Pertel T, Carnaud T, Bluestone C, Lanier JA. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity. 2003;18:41–51.
Article CAS PubMed Google Scholar
Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage Nature, 2002. 419(6908): p. 729 – 34.
Alvarez M et al. Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight, 2019. 5(14).
Brennan K, et al. Human natural killer cell expression of ULBP2 is associated with a mature functional phenotype. Hum Immunol. 2016;77(10):876–85.
Article CAS PubMed Google Scholar
Miner CA, et al. Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive. J Immunol. 2015;194(4):1945–53.
Article CAS PubMed Google Scholar
Bolanos FD, Tripathy SK. Activation receptor-induced tolerance of mature NK cells in vivo requires signaling through the receptor and is reversible. J Immunol. 2011;186(5):2765–71.
Article CAS PubMed Google Scholar
Mazumdar B, Bolanos FD, Tripathy SK. Viral Infection transiently reverses activation receptor-mediated NK cell hyporesponsiveness in an MHC class I-independent mechanism. Eur J Immunol. 2013;43(5):1345–55.
Article CAS PubMed PubMed Central Google Scholar
Hasim MS, Hodgins MM, Vulpis JJ, Makinson E, Asif OJ, Shih S, Scheer HY, MacMillan AK, Alonso O, Burke FG, Cook KP, Li DP, Petrucci R, Santoni MT, Fallon A, Sharpe PG, Sciumè AH, Veillette G, Zingoni A, Gray A, McCurdy DA, Ardolino A. M., When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Sci Adv, 2022. 8(15).
Carosella ED et al. HLA-G Molecules: from Maternal–Fetal Tolerance to Tissue Acceptance. 2003. p. 199–252.
Rouas-Freiss N, et al. HLA-G proteins in cancer: do they provide Tumor cells with an Escape mechanism? Cancer Res. 2005;65(22):10139–44.
Article CAS PubMed Google Scholar
Riteau B, et al. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166(8):5018–26.
Article CAS PubMed Google Scholar
Caumartin J, et al. Trogocytosis-based generation of suppressive NK cells. EMBO J. 2007;26(5):1423–33.
Article CAS PubMed PubMed Central Google Scholar
Nakayama M, et al. Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4 + T cells. Proc Natl Acad Sci U S A. 2011;108(45):18360–5.
Article CAS PubMed PubMed Central Google Scholar
Gordy JT, et al. IFNalpha and 5-Aza-2’-deoxycytidine combined with a dendritic-cell targeting DNA vaccine alter Tumor immune cell infiltration in the B16F10 Melanoma model. Front Immunol. 2022;13:1074644.
Article CAS PubMed Google Scholar
Van Hoof M, Claes S, Proj M, Van Loy T, Schols D, Gobec S, Dehaen W, De Jonghe S. Optimization of triazolo[4,5-d]pyrimidines towards human CC chemokine receptor 7 (CCR7) antagonists European journal of medicinal chemistry, 2023. 251.
Helge Wiig aMAS. Interstitial fluid and Lymph Formation and Transport: physiological regulation and roles in inflammation and Cancer. Physiol Rev, 2012.
Marcenaro E, et al. KIR2DS1-dependent acquisition of CCR7 and migratory properties by human NK cells interacting with allogeneic HLA-C2 + DCs or T-cell blasts. Blood. 2013;121(17):3396–401.
Article CAS PubMed Google Scholar
Pesce S et al. Uptake of CCR7 by KIR2DS4(+) NK cells is induced upon recognition of certain HLA-C alleles J Immunol Res, 2015. 2015: p. 754373.
Gutierrez-Lopez MD, et al. The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci. 2011;68(19):3275–92.
Article CAS PubMed Google Scholar
Lorico A, et al. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood). 2021;246(9):1121–38.
Reyes R, et al. Tetraspanin CD9: a Key Regulator of Cell Adhesion in the Immune System. Front Immunol. 2018;9:863.
Article PubMed PubMed Central Google Scholar
Gonzalez VD, et al. High-grade serous ovarian Tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep. 2021;36(9):109632.
Article CAS PubMed PubMed Central Google Scholar
Tatari-Calderone Z, et al. Acquisition of CD80 by human T cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. J Immunol. 2002;169(11):6162–9.
Comments (0)