Achard P, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development. 2004;131:3357–65.
Article CAS PubMed Google Scholar
Ahmed W, Xia Y, Zhang H, Li R, Bai G, Siddique KHM, et al. Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing. Sci Rep. 2019;9:14922. https://doi.org/10.1038/s41598-019-51443-y.
Article CAS PubMed PubMed Central Google Scholar
Akdogan G, Tufekci ED, Uranbey S, Unver T. miRNA-based drought regulation in wheat. Funct Integr Genomics. 2016;16(3):221–33.
Article CAS PubMed Google Scholar
Allen RS, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A. 2007;104:16371–6.
Article CAS PubMed PubMed Central Google Scholar
Arribas-Hernández L, Marchais A, Poulsen C, Haase B, Hauptmann J, Benes V, et al. The slicer activity of ARGONAUTE1 is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis. Plant Cell. 2016;28:1563–80. https://doi.org/10.1105/tpc.16.00121.
Article CAS PubMed PubMed Central Google Scholar
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2- like target genes. Plant Cell. 2003;15:2730–41.
Article CAS PubMed PubMed Central Google Scholar
Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ. pho2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 2006;141:1000–11.
Article CAS PubMed PubMed Central Google Scholar
Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev PlantBiol. 2013;64:137–59. https://doi.org/10.1146/annurev-arplant-050312120043.
Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A. Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom. 2012;13:1–11.
Bartel DP. MicroRNAs: genomics, biogenesis mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/S0092-8674(04)00045-5.
Article CAS PubMed Google Scholar
Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu J-K. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol. 2012;12:1–11.
Berger Y, et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development. 2009;136(823–832):49.
Bernstein E, Caudy AA, Hammond SM. Hannon GJ Rolefor a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6. https://doi.org/10.1038/35053110.
Article CAS PubMed Google Scholar
Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol. 2012;196:149–61.
Article CAS PubMed Google Scholar
Bian XB, Yu PC, Dong L, Zhao Y, Yang H, Han YZ, Zhang LX. Regulatory role of non-coding RNA in ginseng rusty root symptom tissue. Sci Rep. 2021;11:9211.
Article CAS PubMed PubMed Central Google Scholar
Blein T, et al. A conserved molecular framework for compound leaf development. Science. 2008;322:1835–9.
Article CAS PubMed Google Scholar
Bhutia KL, Khanna VK, Meetei TNG, Bhutia ND. Effects of climate change on growth and development of chilli. Agrotechnology. 2018;7(2):1–4.
Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005;123:1279–91.
Article CAS PubMed PubMed Central Google Scholar
Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. Anantagonistic function for Arabidopsis DCL2 in development and a newfunc- tion for DCL4 in generating viral siRNAs. EMBO J. 2006;25:3347–56. https://doi.org/10.1038/sj.emboj.7601217.
Article CAS PubMed PubMed Central Google Scholar
Brant E, Budak H. Plant small non-coding RNAs and their roles in biotic stresses. Front Plant Sci. 2018;9:1038. https://doi.org/10.3389/fpls.2018.01038.
Article PubMed PubMed Central Google Scholar
Budak H, Zhang B. MicroRNAs in model and complex organisms. Funct Integr Genomics. 2017;17:121–4. https://doi.org/10.1007/s10142-017-0544-1.
Article CAS PubMed Google Scholar
Busch BL, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell. 2011;23:3595–609.
Article CAS PubMed PubMed Central Google Scholar
Cagirici HB, Alptekin B, Budak H. RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats. Sci Rep. 2017;7:10670.
Article PubMed PubMed Central Google Scholar
Cartolano M, et al. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet. 2007;39:901–5.
Article CAS PubMed Google Scholar
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.
Article CAS PubMed Google Scholar
Chen X. Small RNAs and their roles in plant development. BioloAnnu Rev Cell Dev Biol. 2009;25:21–44.
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303:2022–5.
Article CAS PubMed Google Scholar
Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol. 2015;56:73–83.
Article CAS PubMed Google Scholar
Chitwood DH, Timmermans MCP. Small RNAs are on the move. Nature. 2010;467:415–9.
Article CAS PubMed Google Scholar
Chuck G, et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet. 2007;39:1517–21.
Article CAS PubMed Google Scholar
Chuck G, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development. 2010;137:1243–50.
Article CAS PubMed Google Scholar
Contreras-Cubas C, Palomar M, Arteaga-Vazquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. Planta. 2012;236:943–58.
Article CAS PubMed Google Scholar
D’Ario M, Griffiths-Jones S, Kim M. Small RNAs: big impact on plant development. Trends Plant Sci. 2017;22(12):1056.
Das A, Saxena S, Kumar K, Tribhuvan KU, Singh NK, Gaikwad K. Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep. 2020;47:3305–17.
Article CAS PubMed Google Scholar
Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, et al. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J. 2017;91:977–94. https://doi.org/10.1111/tpj.13620.
Article CAS PubMed Google Scholar
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci. 2017;8:378. https://doi.org/10.3389/fpls.2017.00378.
Article PubMed PubMed Central Google Scholar
Esmaeli F, Shiran B, Fallahi H, Mirakhorli N, Budak H, Martínez-Gómez P. In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics. 2017;17:189–201.
Comments (0)