Abdelaal KAA. Effect of salicylic acid and abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba L.) under drought stress. J Plant Prod. 2015;6:1771–88.
Abdelaal KAA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS, Al-Doss AA, El-Shawy E-SE, Abu-Elsaoud AM, Hafez YM. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability. 2020;12:1736. https://doi.org/10.3390/su12051736.
Ahmad SF, Martins C. The modern view of B chromosomes under the impact of high scale omics analyses. Cells. 2019;8:156. https://doi.org/10.3390/cells8020156.
Article PubMed PubMed Central CAS Google Scholar
Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles od enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30:161–75. https://doi.org/10.3109/07388550903524243.
Article PubMed CAS Google Scholar
Alfenito MR, Birchler JA. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993;135:589–97. https://doi.org/10.1093/genetics/135.2.589.
Article PubMed PubMed Central CAS Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–7. https://doi.org/10.1007/BF00018060.
Beumer RR, Te Giffel MC, Cox LJ, Rombouts FM, Abee T. Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol. 1994;60:1359–63. https://doi.org/10.1128/aem.60.4.1359-1363.1994.
Article PubMed PubMed Central CAS Google Scholar
Blavet N, Yang H, Su H, Solanský P, Douglas RN, Karafiátová M, Šimková L, Zhang J, Liu Y, Hou J, Shi X, Chen C, El-Walid M, McCaw ME, Albert PS, Gao Z, Zhao C, Ben-Zvi G, Glick L, Kol G, Shi J, Vrána J, Šimková H, Lamb JC, Newton K, Dawe RK, Doležel J, Ji T, Baruch K, Cheng J, Han F, Birchler JA, Bartoš J. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci USA. 2021;18: e2104254118. https://doi.org/10.1073/pnas.210425411.
Bougourd SM, Jones RN. B chromosomes: a physiological enigma. New Phytol. 1997;137:43–54. https://doi.org/10.1046/j.1469-8137.1997.00823.x.
Carlson WR. B chromosomes as a model system for nondisjunction. Aneuploidy, Part B: induction and test system. New York: Alan R Liss, Inc; 1988. p. 199–207.
Carlson WR, Phillips RL. The B chromosome of maize. CRC Crit Rev Plant Sci. 1986;3:201–26. https://doi.org/10.1080/07352688609382210.
Chen H, Zhang Q, Cai H, Zhou W, Xu F. H2O2 mediates nitrates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ. 2018;41:767–81. https://doi.org/10.1111/pce.13145.
Article PubMed CAS Google Scholar
Cheng YM, Lin BY. Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics. 2003;164:299–310. https://doi.org/10.1093/genetics/164.1.299.
Article PubMed PubMed Central CAS Google Scholar
Chiavarino AM, Rosato M, Manzanero S, Jiménez G, González-Sánchez M, Puertas MJ. Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize. Genetics. 2000;155:889–97. https://doi.org/10.1093/genetics/155.2.889.
Article PubMed PubMed Central CAS Google Scholar
Dherawattana A, Sadanaga K. Cytogenetics of a crown rust resistant hexaploid oat with 42+2 fragment chromosomes. Crop Sci. 1973;13:591–4. https://doi.org/10.2135/cropsci1973.0011183X001300060002x.
Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. J Agric Meteorol. 2017;247:454–66. https://doi.org/10.1016/j.agrformet.2017.08.026.
Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol. 1982;33:317–45. https://doi.org/10.1146/annurev.pp.33.060182.001533.
Gonzalez-Sanchez M, Rosto M, Chiavarino M, Puertas MJ. Chromosome instabilities and programmed cell death in tapetal cells of maize with B chromosomes and effects on pollen viability. Genetics. 2004;166:999–1009. https://doi.org/10.1093/genetics/166.2.999.
Article PubMed PubMed Central CAS Google Scholar
Hafez Y, Attia K, Alamery S, Ghazy A, Al-Doss A, Ibrahim E, Rashwan E, El-Maghraby L, Awad A, Abdelaal K. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy. 2020;10:630. https://doi.org/10.3390/agronomy10050630.
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7:1456–66. https://doi.org/10.4161/psb.21949.
Article PubMed PubMed Central CAS Google Scholar
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98. https://doi.org/10.1016/0003-9861(68)90654-1.
Article PubMed CAS Google Scholar
Holmes DS, Bougourd SM. B-chromosome selection in Allium schoenoprasum. I. Experimental populations. Heredity. 1991;67:117–22. https://doi.org/10.1038/hdy.1991.70.
Hong ZJ, Xiao JX, Peng SF, Lin YP, Cheng YM. Novel B-chromosome-specific transcriptionally active sequences are present throughout the maize B chromosome. Mol Genet Genomics. 2020;295:313–25. https://doi.org/10.1007/s00438-019-01623-2.
Article PubMed CAS Google Scholar
Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol. 2007;164:553–61. https://doi.org/10.1016/j.jplph.2006.03.010.
Article PubMed CAS Google Scholar
Huang W, Du Y, Zhao X, Jin W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 2016;16:88. https://doi.org/10.1186/s12870-016-0775-7.
Article PubMed PubMed Central CAS Google Scholar
Huang YH, Peng SF, Lin YP, Cheng YM. The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes. Chromosome Res. 2020;28:129–38. https://doi.org/10.1007/s10577-019-09620-2.
Article PubMed CAS Google Scholar
Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum S, Men S, Wang L. Chilling and drought stresses in crop plants: implication, cross talk, and potential management opportunities. Front Plant Sci. 2018;9:393. https://doi.org/10.3389/fpls.2018.00393.
Article PubMed PubMed Central Google Scholar
Jana S, Choudhuri MA. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat Bot. 1981;12:345–54. https://doi.org/10.1016/0304-3770(82)90026-2.
Jones RN. B-chromosome drive. Am Nat. 1991;137:430–42. https://doi.org/10.1086/285175.
Jones RN, Viegas W, Houben A. A century of B chromosomes in plants: so what? Ann Bot. 2008;101:767–75. https://doi.org/10.1093/aob/mcm167.
Kao KW, Lin CY, Peng SF, Cheng YM. Characterization of four B-chromosome-specific RAPDs and the development of SCAR markers on the maize B-chromosome. Mol Genet Genomics. 2015;290:431–41. https://doi.org/10.1007/s00438-014-0926-1
Comments (0)