Physiological responses of maize ( L.) seedlings to the B chromosome

Abdelaal KAA. Effect of salicylic acid and abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba L.) under drought stress. J Plant Prod. 2015;6:1771–88.

Google Scholar 

Abdelaal KAA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS, Al-Doss AA, El-Shawy E-SE, Abu-Elsaoud AM, Hafez YM. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability. 2020;12:1736. https://doi.org/10.3390/su12051736.

Article  CAS  Google Scholar 

Ahmad SF, Martins C. The modern view of B chromosomes under the impact of high scale omics analyses. Cells. 2019;8:156. https://doi.org/10.3390/cells8020156.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles od enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30:161–75. https://doi.org/10.3109/07388550903524243.

Article  PubMed  CAS  Google Scholar 

Alfenito MR, Birchler JA. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993;135:589–97. https://doi.org/10.1093/genetics/135.2.589.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–7. https://doi.org/10.1007/BF00018060.

Article  CAS  Google Scholar 

Beumer RR, Te Giffel MC, Cox LJ, Rombouts FM, Abee T. Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol. 1994;60:1359–63. https://doi.org/10.1128/aem.60.4.1359-1363.1994.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blavet N, Yang H, Su H, Solanský P, Douglas RN, Karafiátová M, Šimková L, Zhang J, Liu Y, Hou J, Shi X, Chen C, El-Walid M, McCaw ME, Albert PS, Gao Z, Zhao C, Ben-Zvi G, Glick L, Kol G, Shi J, Vrána J, Šimková H, Lamb JC, Newton K, Dawe RK, Doležel J, Ji T, Baruch K, Cheng J, Han F, Birchler JA, Bartoš J. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci USA. 2021;18: e2104254118. https://doi.org/10.1073/pnas.210425411.

Article  Google Scholar 

Bougourd SM, Jones RN. B chromosomes: a physiological enigma. New Phytol. 1997;137:43–54. https://doi.org/10.1046/j.1469-8137.1997.00823.x.

Article  Google Scholar 

Carlson WR. B chromosomes as a model system for nondisjunction. Aneuploidy, Part B: induction and test system. New York: Alan R Liss, Inc; 1988. p. 199–207.

Google Scholar 

Carlson WR, Phillips RL. The B chromosome of maize. CRC Crit Rev Plant Sci. 1986;3:201–26. https://doi.org/10.1080/07352688609382210.

Article  Google Scholar 

Chen H, Zhang Q, Cai H, Zhou W, Xu F. H2O2 mediates nitrates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ. 2018;41:767–81. https://doi.org/10.1111/pce.13145.

Article  PubMed  CAS  Google Scholar 

Cheng YM, Lin BY. Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics. 2003;164:299–310. https://doi.org/10.1093/genetics/164.1.299.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiavarino AM, Rosato M, Manzanero S, Jiménez G, González-Sánchez M, Puertas MJ. Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize. Genetics. 2000;155:889–97. https://doi.org/10.1093/genetics/155.2.889.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dherawattana A, Sadanaga K. Cytogenetics of a crown rust resistant hexaploid oat with 42+2 fragment chromosomes. Crop Sci. 1973;13:591–4. https://doi.org/10.2135/cropsci1973.0011183X001300060002x.

Article  Google Scholar 

Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. J Agric Meteorol. 2017;247:454–66. https://doi.org/10.1016/j.agrformet.2017.08.026.

Article  Google Scholar 

Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol. 1982;33:317–45. https://doi.org/10.1146/annurev.pp.33.060182.001533.

Article  CAS  Google Scholar 

Gonzalez-Sanchez M, Rosto M, Chiavarino M, Puertas MJ. Chromosome instabilities and programmed cell death in tapetal cells of maize with B chromosomes and effects on pollen viability. Genetics. 2004;166:999–1009. https://doi.org/10.1093/genetics/166.2.999.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hafez Y, Attia K, Alamery S, Ghazy A, Al-Doss A, Ibrahim E, Rashwan E, El-Maghraby L, Awad A, Abdelaal K. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy. 2020;10:630. https://doi.org/10.3390/agronomy10050630.

Article  CAS  Google Scholar 

Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7:1456–66. https://doi.org/10.4161/psb.21949.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98. https://doi.org/10.1016/0003-9861(68)90654-1.

Article  PubMed  CAS  Google Scholar 

Holmes DS, Bougourd SM. B-chromosome selection in Allium schoenoprasum. I. Experimental populations. Heredity. 1991;67:117–22. https://doi.org/10.1038/hdy.1991.70.

Article  Google Scholar 

Hong ZJ, Xiao JX, Peng SF, Lin YP, Cheng YM. Novel B-chromosome-specific transcriptionally active sequences are present throughout the maize B chromosome. Mol Genet Genomics. 2020;295:313–25. https://doi.org/10.1007/s00438-019-01623-2.

Article  PubMed  CAS  Google Scholar 

Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol. 2007;164:553–61. https://doi.org/10.1016/j.jplph.2006.03.010.

Article  PubMed  CAS  Google Scholar 

Huang W, Du Y, Zhao X, Jin W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 2016;16:88. https://doi.org/10.1186/s12870-016-0775-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang YH, Peng SF, Lin YP, Cheng YM. The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes. Chromosome Res. 2020;28:129–38. https://doi.org/10.1007/s10577-019-09620-2.

Article  PubMed  CAS  Google Scholar 

Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum S, Men S, Wang L. Chilling and drought stresses in crop plants: implication, cross talk, and potential management opportunities. Front Plant Sci. 2018;9:393. https://doi.org/10.3389/fpls.2018.00393.

Article  PubMed  PubMed Central  Google Scholar 

Jana S, Choudhuri MA. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat Bot. 1981;12:345–54. https://doi.org/10.1016/0304-3770(82)90026-2.

Article  Google Scholar 

Jones RN. B-chromosome drive. Am Nat. 1991;137:430–42. https://doi.org/10.1086/285175.

Article  Google Scholar 

Jones RN, Viegas W, Houben A. A century of B chromosomes in plants: so what? Ann Bot. 2008;101:767–75. https://doi.org/10.1093/aob/mcm167.

Article  PubMed  Google Scholar 

Kao KW, Lin CY, Peng SF, Cheng YM. Characterization of four B-chromosome-specific RAPDs and the development of SCAR markers on the maize B-chromosome. Mol Genet Genomics. 2015;290:431–41. https://doi.org/10.1007/s00438-014-0926-1

Comments (0)

No login
gif