Corrales M, Traxer O (2021) Initial clinical experience with the new thulium fiber laser: first 50 cases. World J Urol 39(10):3945–3950. https://doi.org/10.1007/s00345-021-03616-6
Article CAS PubMed Google Scholar
Kronenberg P, Traxer O (2019) The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review. Transl Androl Urol 8(Suppl 4):S398–s417. https://doi.org/10.21037/tau.2019.08.01
Article PubMed PubMed Central Google Scholar
Traxer O, Sierra A, Corrales M (2022) Which is the best laser for lithotripsy? Thulium Fiber laser. Eur Urol Open Sci 44:15–17. https://doi.org/10.1016/j.euros.2022.05.020
Article PubMed PubMed Central Google Scholar
Hardy LA, Wilson CR, Irby PB, Fried NM (2014) Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 19(12):128001. https://doi.org/10.1117/1.Jbo.19.12.128001
Blackmon RL, Irby PB, Fried NM (2011) Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 16(7):071403. https://doi.org/10.1117/1.3564884
Article CAS PubMed Google Scholar
Hardy LA, Vinnichenko V, Fried NM (2019) High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med 51(6):522–530. https://doi.org/10.1002/lsm.23057
Matlaga BR, Chew B, Eisner B, Humphreys M, Knudsen B, Krambeck A, Lange D, Lipkin M, Miller NL, Monga M, Pais V, Sur RL, Shah O (2018) Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction. J Endourol 32(1):1–6. https://doi.org/10.1089/end.2017.0641
Sierra A, Corrales M, Piñero A, Traxer O (2022) Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J Urol 40(6):1529–1535. https://doi.org/10.1007/s00345-022-03966-9
Haas CR, Knoedler MA, Li S, Gralnek DR, Best SL, Penniston KL, Nakada SY (2023) Pulse-modulated Holmium:YAG Laser vs the Thulium Fiber laser for renal and Ureteral stones: a single-center prospective Randomized Clinical Trial. J Urol 209(2):374–383. https://doi.org/10.1097/ju.0000000000003050
Kim HJ, Ghani KR (2022) Which is the best laser for lithotripsy? Holmium Laser. Eur Urol Open Sci 44:27–29. https://doi.org/10.1016/j.euros.2022.05.017
Article PubMed PubMed Central Google Scholar
Johnson J, Movassaghi M, Han D, Pingle S, Lee J, Gorroochurn P, Williams J, Shah MS (2023) O, MP2 Effects of Thulium Laser Lithotripsy by Stone Composition, in R.O.C.K. Society Annual Meeting. : Boston, MA
Ventimiglia E, Doizi S, Kovalenko A, Andreeva V, Traxer O (2020) Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using holmium:YAG and super-pulse thulium fibre lasers. BJU Int 126(1):159–167. https://doi.org/10.1111/bju.15079
Article CAS PubMed Google Scholar
Chan KF, Pfefer TJ, Teichman JMH, Welch AJ (2001) A perspective on laser lithotripsy: the fragmentation processes. J Endourol 15(3):257–273
Article CAS PubMed Google Scholar
Ulvik Ø, Æsøy MS, Juliebø-Jones P, Gjengstø P, Beisland C (2022) Thulium Fibre Laser versus Holmium:YAG for ureteroscopic lithotripsy: outcomes from a prospective Randomised Clinical Trial. Eur Urol 82(1):73–79. https://doi.org/10.1016/j.eururo.2022.02.027
Ho DS, Scialabba D, Terry RS, Ma X, Chen J, Sankin GN, Xiang G, Qi R, Preminger GM, Lipkin ME, Zhong P (2021) The role of Cavitation in Energy delivery and stone damage during laser lithotripsy. J Endourol 35(6):860–870. https://doi.org/10.1089/end.2020.0349
Article PubMed PubMed Central Google Scholar
Zhong P, Chuong CJ, Goolsby RD, Preminger GM (1992) Microhardness measurements of renal calculi: Regional differences and effects of microstructure. J Biomed Mater Res 26(9):1117–1130. https://doi.org/10.1002/jbm.820260902
Article CAS PubMed Google Scholar
Soto-Palou FG, Chen J, Medairos R, Zhong P, Antonelli JA, Preminger GM, Lipkin ME (2023) In pursuit of the optimal dusting settings with the Thulium Fiber laser: an < i > in vitro assessment. J Endourol. https://doi.org/10.1089/end.2023.0168
Xiang G, Li D, Chen J, Mishra A, Sankin G, Zhao X, Tang Y, Wang K, Yao J, Zhong P (2023) Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy. Phys Fluids 35(3):033303. https://doi.org/10.1063/5.0139741
Chen J, Ho DS, Xiang G, Sankin G, Preminger GM, Lipkin ME, Zhong P (2022) Cavitation plays a vital role in Stone Dusting during Short Pulse Holmium:YAG laser lithotripsy. J Endourol 36(5):674–683. https://doi.org/10.1089/end.2021.0526
Article PubMed PubMed Central Google Scholar
De Coninck V, Defraigne C, Traxer O (2022) Watt determines the temperature during laser lithotripsy. World J Urol 40(5):1257–1258. https://doi.org/10.1007/s00345-021-03848-6
Germain T, Berthe L, Panthier F, Gorny C, Traxer O, Doizi S (2021) Assessment of factors involved in laser Fiber degradation with Thulium Fiber laser. J Endourol 36(5):668–673. https://doi.org/10.1089/end.2021.0387
Blackmon RL, Irby PB, Fried NM (2010) Holmium:YAG (λ = 2,120 nm) versus thulium fiber (λ = 1,908 nm) laser lithotripsy. Lasers Surg Med 42(3):232–236. https://doi.org/10.1002/lsm.20893
Zhong P, Chuong CJ, Preminger GM (1993) Characterization of fracture toughness of renal calculi using a microindentation technique. J Mater Sci Lett 12(18):1460–1462. https://doi.org/10.1007/BF00591608
Fried NM (2005) Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 µm. Lasers Surg Med 37(1):53–58. https://doi.org/10.1002/lsm.20196
Pishchalnikov YA, Behnke-Parks WM, Stoller ML (2023) Plasma formation in holmium:YAG laser lithotripsy. Lasers Surg Med 55(5):503–514. https://doi.org/10.1002/lsm.23659
Luke AH, Pierce BI, Nathaniel MF (2018) Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water. in Proc.SPIE.
Liu Y, Claus S, Kerfriden P, Chen J, Zhong P, Dolbow JE (2023) Model-based simulations of pulsed laser ablation using an embedded finite element method. Int J Heat Mass Transf 204:123843. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123843
Article PubMed PubMed Central Google Scholar
Information NCfB (2023) PubChem Compound Summary for CID 24456, Calcium Phosphate. https://pubchem.ncbi.nlm.nih.gov/compound/Calcium-Phosphate. Accessed 5, September 2023
Jiang P, Okhunov Z, Afyouni AS, Ali S, Hosseini Sharifi SH, Bhatt R, Brevik A, Ayad M, Larson K, Osann K, Patel RM, Landman J, Clayman RV (2022) Comparison of Superpulse Thulium Fiber Laser vs Holmium laser for ablation of renal calculi in an in vivo Porcine Model. J Endourol 37(3):335–340. https://doi.org/10.1089/end.2022.0445
Aldoukhi AH, Ghani KR, Hall TL, Roberts WW (2017) Thermal response to high-power holmium laser lithotripsy. J Endourol 31(12):1308–1312. https://doi.org/10.1089/end.2017.0679
Belle JD, Chen R, Srikureja N, Amasyali AS, Keheila M, Baldwin DD (2022) Does the Novel Thulium Fiber Laser have a higher risk of Urothelial Thermal Injury than the Conventional Holmium laser in an in vitro. Study? J Endourol 36(9):1249–1254. https://doi.org/10.1089/end.2021.0842
Comments (0)