Bakhsh T, Alhazmi S, Alburae NA, Farsi A, Alzahrani F, Choudhry H, et al. Exosomal miRNAs as a promising source of biomarkers in colorectal cancer progression. Int J Mol Sci. 2022;23:4855.
Article CAS PubMed PubMed Central Google Scholar
Alyabsi M, Algarni M, Alshammari K. Trends in colorectal cancer incidence rates in Saudi Arabia (2001–2016) using Saudi National Registry: early-versus late-onset disease. Front Oncol. 2021;11:730689.
Article PubMed PubMed Central Google Scholar
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol Rev/Prz Gastroenterol. 2019;14:89–103.
Van der Jeught K, Xu H-C, Li Y-J, Lu X-B, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24:3834.
Article PubMed PubMed Central Google Scholar
Geng L, Wang J. Molecular effectors of radiation resistance in colorectal cancer. Precis Radiat Oncol. 2017;1:27–33.
Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.
Article CAS PubMed PubMed Central Google Scholar
Liang L, Tu Y, Lu J, Wang P, Guo Z, Wang Q, et al. Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/β-catenin signaling pathway. J Cell Sci. 2019;132:jcs228478.
Article CAS PubMed Google Scholar
Wang X, Wang Y, Li X, Yu Z, Song C, Du Y. Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. RSC Med Chem. 2021;12:1650–71.
Article CAS PubMed PubMed Central Google Scholar
Fleming FF, Yao L, Ravikumar P, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53:7902–17.
Article CAS PubMed PubMed Central Google Scholar
Wild RA, Reis SE. Estrogens, progestins, selective estrogen receptor modulators, and the arterial tree. Am J Obstet Gynecol. 2001;184:1031–9.
Article CAS PubMed Google Scholar
Boyd MJ, Crane SN, Robichaud J, Scheigetz J, Black WC, Chauret N, et al. Investigation of ketone warheads as alternatives to the nitrile for preparation of potent and selective cathepsin K inhibitors. Bioorg Med Chem Lett. 2009;19:675–9.
Article CAS PubMed Google Scholar
Sindrup S, Brøsen K, Hansen M, Aaes-Jørgensen T, Overø K, Gram L. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit. 1993;15:11–7.
Article CAS PubMed Google Scholar
Jackson T, Woo LL, Trusselle MN, Purohit A, Reed MJ, Potter BV. Non‐steroidal aromatase inhibitors based on a biphenyl scaffold: synthesis, in vitro sar, and molecular modelling. ChemMedChem. 2008;3:603–18.
Article CAS PubMed Google Scholar
Aghabozorgi AS, Ebrahimi R, Bahiraee A, Tehrani SS, Nabizadeh F, Setayesh L, et al. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci. 2020;256:118006.
Article CAS PubMed Google Scholar
Bourhis E, Wang W, Tam C, Hwang J, Zhang Y, Spittler D, et al. Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure. 2011;19:1433–42.
Article CAS PubMed Google Scholar
Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407:530–5.
Article CAS PubMed Google Scholar
Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature. 2000;407:535–8.
Article CAS PubMed Google Scholar
Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y, Macke JP, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382:225–30.
Article CAS PubMed Google Scholar
Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J, Hwang J, et al. Reconstitution of a Frizzled8· Wnt3a· LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J Biol Chem. 2010;285:9172–9.
Article CAS PubMed PubMed Central Google Scholar
Gong Y, Bourhis E, Chiu C, Stawicki S, DeAlmeida VI, Liu BY, et al. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS ONE. 2010;5:e12682.
Article PubMed PubMed Central Google Scholar
Curtin JC, Lorenzi MV. Erratum: drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget. 2018;9:34856.
Article PubMed PubMed Central Google Scholar
Semënov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem. 2008;283:21427–32.
Article PubMed PubMed Central Google Scholar
Dahlmann M, Monks A, Harris ED, Kobelt D, Osterland M, Khaireddine F, et al. Combination of wnt/β-catenin targets S100A4 and DKK1 improves prognosis of human colorectal cancer. Cancers. 2021;14:37.
Article PubMed PubMed Central Google Scholar
Al-Zaydi KM, Mekheimer RA, Mousally SM, Borik RM, Elnagdi MH. An expeditious and green synthesis of new enaminones and study their chemical reactivity toward some different amines and binucleophiles under environmentally friendly conditions. Arab J Chem. 2017;10:S2697–S704.
Zaydi KA, Al-Johani M, Alqahtani N, Mousally S, Elnagdi NH. Reactions under pressure: synthesis of functionally substituted arylhydrazonal derivatives as precursors of novel pyridazines and nicotinates. Russ J Gen Chem. 2020;90:710–9.
Mak K.-K, Pichika M.R. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24:773–780.
Popiołek Ł, Biernasiuk A. New hydrazides and hydrazide‐hydrazones of 2, 3‐dihalogen substituted propionic acids: synthesis and in vitro antimicrobial activity evaluation. Chem Biodivers. 2017;14:e1700075.
Shakdofa MM, Shtaiwi MH, Morsy N, Abdel-rassel T. Metal complexes of hydrazones and their biological, analytical and catalytic applications: a review. Main Group Chem. 2014;13:187–218.
Kajal A, Bala S, Sharma N, Kamboj S, Saini V. Therapeutic potential of hydrazones as anti-inflammatory agents. Int J Med Chem. 2014;2014:761030.
PubMed PubMed Central Google Scholar
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and antitumor activity of natural polycyclic endoperoxides: origin, structures and biological activity. Molecules. 2021;26:686.
Article CAS PubMed PubMed Central Google Scholar
Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23.
Article CAS PubMed Google Scholar
Raisch J, Côté-Biron A, Rivard N. A role for the WNT co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers. 2019;11:1162.
Article CAS PubMed PubMed Central Google Scholar
Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47:W357–W64.
Article CAS PubMed PubMed Central Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Article PubMed PubMed Central Google Scholar
Ran L, Mou X, Peng Z, Li X, Li M, Xu D, et al. ADORA2A promotes proliferation and inhibits apoptosis through PI3K/AKT pathway activation in colorectal carcinoma. 2022. https://doi.org/10.21203/rs.3.rs-2224036/v1.
Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016;56:2495–506.
Article CAS PubMed Google Scholar
Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS ONE. 2010;5:e12029.
Article PubMed PubMed Central Google Scholar
Majewski M, Ruiz-Carmona S, Barril X. An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Commun Chem. 2019;2:110.
Comments (0)