Targeting mitochondrial shape: at the heart of cardioprotection

Abe T, Kiyonari H, Shioi G, Inoue K, Nakao K, Aizawa S, Fujimori T (2011) Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging. Genesis 49:579–590. https://doi.org/10.1002/dvg.20753

Article  CAS  PubMed  Google Scholar 

Abete P, Testa G, Ferrara N, De Santis D, Capaccio P, Viati L, Calabrese C, Cacciatore F, Longobardi G, Condorelli M, Napoli C, Rengo F (2002) Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats. Am J Physiol Heart Circ Physiol 282:H1978-1987. https://doi.org/10.1152/ajpheart.00929.2001

Article  CAS  PubMed  Google Scholar 

Abete P, Testa G, Galizia G, Mazzella F, Della Morte D, de Santis D, Calabrese C, Cacciatore F, Gargiulo G, Ferrara N, Rengo G, Sica V, Napoli C, Rengo F (2005) Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart. Exp Gerontol 40:43–50. https://doi.org/10.1016/j.exger.2004.10.005

Article  CAS  PubMed  Google Scholar 

Adaniya SM, OU J, Cypress MW, Kusakari Y, Jhun BS (2019) Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 316:C583–C604. https://doi.org/10.1152/ajpcell.00523.2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alleman RJ, Tsang AM, Ryan TE, Patteson DJ, McClung JM, Spangenburg EE, Shaikh SR, Neufer PD, Brown DA (2016) Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am J Physiol Heart Circ Physiol 310:H1360-1370. https://doi.org/10.1152/ajpheart.00858.2015

Article  PubMed  PubMed Central  Google Scholar 

Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929. https://doi.org/10.1083/jcb.201308006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656. https://doi.org/10.1073/pnas.202320599

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ascensao A, Ferreira R, Oliveira PJ, Magalhaes J (2006) Effects of endurance training and acute Doxorubicin treatment on rat heart mitochondrial alterations induced by in vitro anoxia-reoxygenation. Cardiovasc Toxicol 6:159–172. https://doi.org/10.1385/ct:6:3:159

Article  CAS  PubMed  Google Scholar 

Aurigemma GP, de Simone G, Fitzgibbons TP (2013) Cardiac remodeling in obesity. Circ Cardiovasc Imaging 6:142–152. https://doi.org/10.1161/CIRCIMAGING.111.964627

Article  PubMed  Google Scholar 

Baandrup U, Florio RA, Roters F, Olsen EG (1981) Electron microscopic investigation of endomyocardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients. Circulation 63:1289–1298. https://doi.org/10.1161/01.cir.63.6.1289

Article  CAS  PubMed  Google Scholar 

Babak Ebadi AD (2018) Effect of exercise training intensity on mitochondrial dynamics and mitophagy in post myocardial infarction rats. Int J Appl Exerc Physiol 7(2):46–53. https://doi.org/10.22631/ijaep.v7i2.278

Article  Google Scholar 

Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J, Laville M, Guillet C, Boirie Y, Wallberg-Henriksson H, Manco M, Calvani M, Castagneto M, Palacin M, Mingrone G, Zierath JR, Vidal H, Zorzano A (2005) Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54:2685–2693. https://doi.org/10.2337/diabetes.54.9.2685

Article  CAS  PubMed  Google Scholar 

Ban T, Ishihara N (2020) Analysis of mitochondrial membrane fusion GTPase OPA1 expressed by the silkworm expression system. Methods Mol Biol 2159:115–127. https://doi.org/10.1007/978-1-0716-0676-6_9

Article  CAS  PubMed  Google Scholar 

Ban T, Ishihara T, Kohno H, Saita S, Ichimura A, Maenaka K, Oka T, Mihara K, Ishihara N (2017) Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat Cell Biol 19:856–863. https://doi.org/10.1038/ncb3560

Article  CAS  PubMed  Google Scholar 

Ban T, Kohno H, Ishihara T, Ishihara N (2018) Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion. Biochim Biophys Acta Bioenerg 1859:951–957. https://doi.org/10.1016/j.bbabio.2018.05.016

Article  CAS  PubMed  Google Scholar 

Barrasso AP, Tong X, Poche RA (2018) The mito::mKate2 mouse: a far-red fluorescent reporter mouse line for tracking mitochondrial dynamics in vivo. Genesis. https://doi.org/10.1002/dvg.23087

Article  PubMed  Google Scholar 

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

Article  PubMed  PubMed Central  Google Scholar 

Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103:274–284. https://doi.org/10.1007/s00395-007-0691-y

Article  CAS  PubMed  Google Scholar 

Blaak EE, Goossens GH (2023) Metabolic phenotyping in people living with obesity: implications for dietary prevention. Rev Endocr Metab Disord 24:825–838. https://doi.org/10.1007/s11154-023-09830-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bluher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15:288–298. https://doi.org/10.1038/s41574-019-0176-8

Article  PubMed  Google Scholar 

Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135. https://doi.org/10.1161/CIRCRESAHA.107.164699

Article  CAS  PubMed  Google Scholar 

Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. https://doi.org/10.1007/s00395-010-0124-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655. https://doi.org/10.1111/j.1582-4934.2011.01516.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261. https://doi.org/10.1093/cvr/cvp033

Article  CAS  PubMed  Google Scholar 

Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. https://doi.org/10.1007/s00395-009-0007-5

Article  CAS  PubMed  Google Scholar 

Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Ge SX, Francis TC, Kennedy NW, Picton LK, Kumar T, Uppuluri S, Miller AM, Itoh K, Karbowski M, Sesaki H, Hill RB, Polster BM (2017) The putative Drp1 inhibitor mdivi-1 Is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell 40(583–594):e586. https://doi.org/10.1016/j.devcel.2017.02.020

Article  CAS  Google Scholar 

Bordt EA, Zhang N, Waddell J, Polster BM (2022) The non-specific Drp1 inhibitor Mdivi-1 has modest biochemical antioxidant activity. Antioxidants (Basel). https://doi.org/10.3390/antiox11030450

Article  PubMed  Google Scholar 

Bossy B, Petrilli A, Klinglmayr E, Chen J, Lutz-Meindl U, Knott AB, Masliah E, Schwarzenbacher R, Bossy-Wetzel E (2010) S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S513-526. https://doi.org/10.3233/JAD-2010-100552

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M (2020) Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 24:2717–2729. https://doi.org/10.1111/jcmm.14953

Article  PubMed  PubMed Central  Google Scholar 

Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466. https://doi.org/10.2337/db07-0481

Article  CAS  PubMed  Google Scholar 

Brand CS, Tan VP, Brown JH, Miyamoto S (2018) RhoA regulates Drp1 mediated

Comments (0)

No login
gif