Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120:2081–2090
Article CAS PubMed Google Scholar
Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456
Article CAS PubMed Google Scholar
Alon S et al (2021) Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 371:eaax2656
Article CAS PubMed Central PubMed Google Scholar
Amat SB, Rowan MJM, Gaffield MA, Bonnan A, Kikuchi C, Taniguchi H, Christie JM (2017) Using c-kit to genetically target cerebellar molecular layer interneurons in adult mice. PLoS One 12:e0179347
Article PubMed Central PubMed Google Scholar
Ament SA, Poulopoulos A (2023) The brain’s dark transcriptome: sequencing RNA in distal compartments of neurons and glia. Curr Op Neurobiol 81:102725
Article CAS PubMed Google Scholar
Ankri L, Husson Z, Pietrajtis K, Proville R, Lena C, Yarom Y, Dieudonne S, Uusisaari MY (2015) A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. Elife 4:e06262
Article PubMed Central PubMed Google Scholar
Armengol JA, Sotelo C (1991) Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in “in vitro” slices. Dev Brain Res 64:95–114
Aroca P, Puelles L (2005) Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Brain Res Rev 49:179–190
Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29:10104–10110
Article CAS PubMed Central PubMed Google Scholar
Bartosovic M, Castelo-Branco G (2023) Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat Biotechnol 41:794–805
Article CAS PubMed Google Scholar
Basson MA, Echevarria D, Ahn CP, Sudarov A, Joyner AL, Mason IJ, Martinez S, Martin GR (2008) Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 135:889–898
Article CAS PubMed Google Scholar
Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Becret J, Belle M, Vougny J, Uthayasuthan S, Ros O, Nicol X (2023) Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat Commun 14:3809–39516
Article CAS PubMed Central PubMed Google Scholar
Baysoy A, Bai Z, Satija R, Fan R (2023) The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol 24:695–713
Article CAS PubMed Google Scholar
Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordatze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172
Article CAS PubMed Google Scholar
Benegas G, Fischer J, Song YS (2022) Robust and annotation-free analysis of alternative splicing across diverse cell types in mice. Elife 11:e73520
Article CAS PubMed Central PubMed Google Scholar
Bessodes N, Parain K, Bronchain O, Bellefroid EJ, Perron M (2017) Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural Dev 12:16
Article PubMed Central PubMed Google Scholar
Bonanomi D, Chivatakarn O, Bai G, Abdesselem H, Lettieri K, Marquardt T, Pierchala BA, Pfaff SL (2012) Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 148:568–582
Article CAS PubMed Central PubMed Google Scholar
Butler SJ, Bronner ME (2015) From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate. Dev Biol 398:135–146
Article CAS PubMed Google Scholar
Cackowski FC, Xu L, Hu B, Cheng SY (2004) Identification of two novel alternatively spliced Neuropilin-1 isoforms. Genomics 84:82–94
Article CAS PubMed Google Scholar
Cadilhac C, Bachy I, Forget A, Hodson DJ, Jahannault-Talignani C, Furley AJ, Ayrault O, Mollard P, Sotelo C, Ango F (2021) Excitatory granule neuron precursors orchestrate laminar localization and differentiation of cerebellar inhibitory interneuron subtypes. Cell Rep 34:108904
Article CAS PubMed Google Scholar
Cameron DB, Kasai K, Jiang Y, Hu T, Saeki Y, Komuro H (2009) Four distinct phases of basket/stellate cell migration after entering their final destination (the molecular layer) in the developing cerebellum. Dev Biol 332:309–324
Article CAS PubMed Central PubMed Google Scholar
Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y, Phoenix TN, Natarajan S, Easton J, Northcott PA, Gawad C (2018) A single-cell transcriptional atlas of the developing murine cerebellum. Curr Biol 28:2910–2920
Article CAS PubMed Google Scholar
Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326
Cerrato V, Parmigiani E, Figueres-Onate M, Betizeau M, Aprato J, Nanavaty I, Berchialla P, Luzzati F, de’Sperati C, Lopez-Mascaraque L, Buffo A (2018) Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol 16:e2005513
Article PubMed Central PubMed Google Scholar
Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou YH, Johnson JE (2013) Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell 25:182–195
Article CAS PubMed Central PubMed Google Scholar
Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798
Article CAS PubMed Google Scholar
Chattopadhyaya B, Di CG, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, Huang ZJ (2004) Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 24:9598–9611
Article CAS PubMed Central PubMed Google Scholar
Chavas J, Marty A (2003) Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci 23:2019–2031
Article CAS PubMed Central PubMed Google Scholar
Chen X, Du Y, Broussard GJ, Kislin M, Yuede CM, Zhang S, Dietmann S, Gabel H, Zhao G, Wang SSH (2022) Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature 605:722–727
Article CAS PubMed Central PubMed Google Scholar
Chizhikov VV (2021) Roof plate in cerebellar neurogenesis. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Sillitoe RV (eds) Handbook of the cerebellum and cerebellar disorders. Springer, Cham
Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804
Article CAS PubMed Google Scholar
Chopra R, Wasserman AH, Pulst SM, De Zeeuw CI, Shakkottai VG (2018) Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia. Hum Mol Genet 27:1396–1410
Article CAS PubMed Central PubMed Google Scholar
Consalez GG, Hawkes R (2013) The compartmental restriction of cerebellar interneurons. Front Neural Circ 6:123
Consalez GG, Goldowitz D, Casoni F, Hawkes R (2021) Origins, development, and compartmentation of the granule cells of the cerebellum. Front Neural Circuits 14:611841
Article PubMed Central PubMed Google Scholar
Coolen M et al (2022) Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 109:909–927
Article CAS PubMed Central PubMed Google Scholar
Crino PB, Eberwine J (1996) Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17:1173–1187
Comments (0)