Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions

Amano T, Yamakuni T, Okabe N et al (1991) Production of nerve growth factor in rat skeletal muscle. Neurosci Lett 132(1):5–7. https://doi.org/10.1016/0304-3940(91)90418-S

Article  CAS  PubMed  Google Scholar 

Anderson MJ, Cohen MW (1974) Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol 237(2):385–400. https://doi.org/10.1113/jphysiol.1974.sp010487

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnold AS, Christe M, Handschin C (2012) A functional motor unit in the culture dish: co-culture of spinal cord explants and muscle cells. J Vis Exp 62:3616. https://doi.org/10.3791/3616

Article  Google Scholar 

Bandi E, Bernareggi A, Grandolfo M et al (2005) Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+ spikes in mouse myotubes during myogenesis. J Physiol 568(Pt 1):171–180. https://doi.org/10.1113/jphysiol.2005.091439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birbrair A, Wang ZM, Messi ML et al (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS ONE 6(2):e16816. https://doi.org/10.1371/journal.pone.0016816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birbrair A, Zhang T, Wang ZM et al (2013) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. https://doi.org/10.1016/j.scr.2012.09.003

Article  CAS  PubMed  Google Scholar 

Boido M, De Amicis E, Mareschi K et al (2021) Organotypic spinal cord cultures: an in vitro 3D model to preliminary screen treatments for spinal muscular atrophy. Eur J Histochem 65(s1):3294. https://doi.org/10.4081/ejh.2021.3294

Article  PubMed  PubMed Central  Google Scholar 

Bonifacino T, Zerbo RA, Balbi M et al (2021) Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci 22(22):12236. https://doi.org/10.3390/ijms222212236

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curran-Everett D (2013) Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ 37(3):213–219. https://doi.org/10.1152/advan.00053.2013

Article  PubMed  Google Scholar 

Dudás J, Bitsche M, Schartinger V et al (2011) Fibroblasts produce brain-derived neurotrophic factor and induce mesenchymal transition of oral tumor cells. Oral Oncol 47(2):98–103. https://doi.org/10.1016/j.oraloncology.2010.11.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duke-Elder WS, Duke-Elder PM (1930) The contraction of the extrinsic muscles of the eye by choline and nicotine 107(751):332–343. https://doi.org/10.1098/rspb.1930.0076

Franco-Obregón A Jr, Lansman JB (1995) Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice. J Neurosci Res 42(4):452–458. https://doi.org/10.1002/jnr.490420403

Article  PubMed  Google Scholar 

Griesbeck O, Parsadanian AS, Sendtner M et al (1995) Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res 42(1):21–33. https://doi.org/10.1002/jnr.490420104

Article  CAS  PubMed  Google Scholar 

Grune T, Ott C, Häseli S et al (2019) The “MYOCYTER” – Convert cellular and cardiac contractions into numbers with ImageJ. Sci Rep 9:15112. https://doi.org/10.1038/s41598-019-51676-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanson MG, Niswander LA (2014) An explant muscle model to examine the refinement of the synaptic landscape. J Neurosci Methods 238:95–104. https://doi.org/10.1016/j.jneumeth.2014.09.013

Article  PubMed  PubMed Central  Google Scholar 

Heidemann M, Streit J, Tscherter A (2014) Functional regeneration of intraspinal connections in a new in vitro model. Neuroscience 262:40–52. https://doi.org/10.1016/j.neuroscience.2013.12.051

Article  CAS  PubMed  Google Scholar 

Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24(1):66–70. https://doi.org/10.1038/71709

Article  CAS  PubMed  Google Scholar 

Katina IE, Nasledov GA (2008) A comparative analysis of contractile responses induced by acetylcholine and choline in twich and tonic frog skeletal muscle fibres. Biofizika 53(6):1078–1086

CAS  PubMed  Google Scholar 

Kim N, Burden SJ (2008) MuSK controls where motor axons grow and form synapses. Nat Neurosci 11(1):19–27. https://doi.org/10.1038/nn2026

Article  CAS  PubMed  Google Scholar 

Kobayashi T, Askanas V, Engel WK (1987) Human muscle cultured in monolayer and cocultured with fetal rat spinal cord: importance of dorsal root ganglia for achieving successful functional innervation. J Neurosci 7(10):3131–3141. https://doi.org/10.1523/JNEUROSCI.07-10-03131.1987

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larkin LM, Van der Meulen JH, Dennis RG et al (2006) Functional evaluation of nerve-skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 42(3–4):75–82. https://doi.org/10.1290/0509064.1

Article  CAS  PubMed  Google Scholar 

Liu W, Wei-LaPierre L, Klose A et al (2015) Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. Elife 4:e09221. https://doi.org/10.7554/eLife.09221

Article  PubMed  PubMed Central  Google Scholar 

McCullough MJ, Peplinski NG, Kinnell KR et al (2011) Glial cell line-derived neurotrophic factor protein content in rat skeletal muscle is altered by increased physical activity in vivo and in vitro. Neuroscience 174:234–244. https://doi.org/10.1016/j.neuroscience.2010.11.016

Article  CAS  PubMed  Google Scholar 

Mikhailova MM, Panteleyev AA Jr, Paltsev MA, Panteleyev AA (2019) Spinal cord tissue affects sprouting from aortic fragments in ex vivo co-culture. Cell Biol Int 43(10):1193–1200. https://doi.org/10.1002/cbin.11112

Article  CAS  PubMed  Google Scholar 

Morimoto Y, Kato-Negishi M, Onoe H et al (2013) Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 34(37):9413–9419. https://doi.org/10.1016/j.biomaterials.2013.08.062

Article  CAS  PubMed  Google Scholar 

Mousavi K, Jasmin BJ (2006) BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci 26(21):5739–5749. https://doi.org/10.1523/JNEUROSCI.5398-05.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natarajan A, Sethumadhavan A, Krishnan UM (2019) Toward building the neuromuscular junction in vitro models to study synaptogenesis and neurodegeneration. ACS Omega 4(7):12969–12977. https://doi.org/10.1021/acsomega.9b00973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raffa P, Easler M, Urciuolo A (2022) Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res 17(4):759–766. https://doi.org/10.4103/1673-5374.322447

Article  PubMed  Google Scholar 

Rimington RP, Fleming JW, Capel AJ et al (2021) Bioengineered model of the human motor unit with physiologically functional neuromuscular junctions. Sci Rep 11(1):11695. https://doi.org/10.1038/s41598-021-91203-5

Article  CAS 

Comments (0)

No login
gif