Amano T, Yamakuni T, Okabe N et al (1991) Production of nerve growth factor in rat skeletal muscle. Neurosci Lett 132(1):5–7. https://doi.org/10.1016/0304-3940(91)90418-S
Article CAS PubMed Google Scholar
Anderson MJ, Cohen MW (1974) Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol 237(2):385–400. https://doi.org/10.1113/jphysiol.1974.sp010487
Article CAS PubMed PubMed Central Google Scholar
Arnold AS, Christe M, Handschin C (2012) A functional motor unit in the culture dish: co-culture of spinal cord explants and muscle cells. J Vis Exp 62:3616. https://doi.org/10.3791/3616
Bandi E, Bernareggi A, Grandolfo M et al (2005) Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+ spikes in mouse myotubes during myogenesis. J Physiol 568(Pt 1):171–180. https://doi.org/10.1113/jphysiol.2005.091439
Article CAS PubMed PubMed Central Google Scholar
Birbrair A, Wang ZM, Messi ML et al (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS ONE 6(2):e16816. https://doi.org/10.1371/journal.pone.0016816
Article CAS PubMed PubMed Central Google Scholar
Birbrair A, Zhang T, Wang ZM et al (2013) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. https://doi.org/10.1016/j.scr.2012.09.003
Article CAS PubMed Google Scholar
Boido M, De Amicis E, Mareschi K et al (2021) Organotypic spinal cord cultures: an in vitro 3D model to preliminary screen treatments for spinal muscular atrophy. Eur J Histochem 65(s1):3294. https://doi.org/10.4081/ejh.2021.3294
Article PubMed PubMed Central Google Scholar
Bonifacino T, Zerbo RA, Balbi M et al (2021) Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci 22(22):12236. https://doi.org/10.3390/ijms222212236
Article CAS PubMed PubMed Central Google Scholar
Curran-Everett D (2013) Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ 37(3):213–219. https://doi.org/10.1152/advan.00053.2013
Dudás J, Bitsche M, Schartinger V et al (2011) Fibroblasts produce brain-derived neurotrophic factor and induce mesenchymal transition of oral tumor cells. Oral Oncol 47(2):98–103. https://doi.org/10.1016/j.oraloncology.2010.11.002
Article CAS PubMed PubMed Central Google Scholar
Duke-Elder WS, Duke-Elder PM (1930) The contraction of the extrinsic muscles of the eye by choline and nicotine 107(751):332–343. https://doi.org/10.1098/rspb.1930.0076
Franco-Obregón A Jr, Lansman JB (1995) Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice. J Neurosci Res 42(4):452–458. https://doi.org/10.1002/jnr.490420403
Griesbeck O, Parsadanian AS, Sendtner M et al (1995) Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res 42(1):21–33. https://doi.org/10.1002/jnr.490420104
Article CAS PubMed Google Scholar
Grune T, Ott C, Häseli S et al (2019) The “MYOCYTER” – Convert cellular and cardiac contractions into numbers with ImageJ. Sci Rep 9:15112. https://doi.org/10.1038/s41598-019-51676-x
Article CAS PubMed PubMed Central Google Scholar
Hanson MG, Niswander LA (2014) An explant muscle model to examine the refinement of the synaptic landscape. J Neurosci Methods 238:95–104. https://doi.org/10.1016/j.jneumeth.2014.09.013
Article PubMed PubMed Central Google Scholar
Heidemann M, Streit J, Tscherter A (2014) Functional regeneration of intraspinal connections in a new in vitro model. Neuroscience 262:40–52. https://doi.org/10.1016/j.neuroscience.2013.12.051
Article CAS PubMed Google Scholar
Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24(1):66–70. https://doi.org/10.1038/71709
Article CAS PubMed Google Scholar
Katina IE, Nasledov GA (2008) A comparative analysis of contractile responses induced by acetylcholine and choline in twich and tonic frog skeletal muscle fibres. Biofizika 53(6):1078–1086
Kim N, Burden SJ (2008) MuSK controls where motor axons grow and form synapses. Nat Neurosci 11(1):19–27. https://doi.org/10.1038/nn2026
Article CAS PubMed Google Scholar
Kobayashi T, Askanas V, Engel WK (1987) Human muscle cultured in monolayer and cocultured with fetal rat spinal cord: importance of dorsal root ganglia for achieving successful functional innervation. J Neurosci 7(10):3131–3141. https://doi.org/10.1523/JNEUROSCI.07-10-03131.1987
Article CAS PubMed PubMed Central Google Scholar
Larkin LM, Van der Meulen JH, Dennis RG et al (2006) Functional evaluation of nerve-skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 42(3–4):75–82. https://doi.org/10.1290/0509064.1
Article CAS PubMed Google Scholar
Liu W, Wei-LaPierre L, Klose A et al (2015) Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. Elife 4:e09221. https://doi.org/10.7554/eLife.09221
Article PubMed PubMed Central Google Scholar
McCullough MJ, Peplinski NG, Kinnell KR et al (2011) Glial cell line-derived neurotrophic factor protein content in rat skeletal muscle is altered by increased physical activity in vivo and in vitro. Neuroscience 174:234–244. https://doi.org/10.1016/j.neuroscience.2010.11.016
Article CAS PubMed Google Scholar
Mikhailova MM, Panteleyev AA Jr, Paltsev MA, Panteleyev AA (2019) Spinal cord tissue affects sprouting from aortic fragments in ex vivo co-culture. Cell Biol Int 43(10):1193–1200. https://doi.org/10.1002/cbin.11112
Article CAS PubMed Google Scholar
Morimoto Y, Kato-Negishi M, Onoe H et al (2013) Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 34(37):9413–9419. https://doi.org/10.1016/j.biomaterials.2013.08.062
Article CAS PubMed Google Scholar
Mousavi K, Jasmin BJ (2006) BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci 26(21):5739–5749. https://doi.org/10.1523/JNEUROSCI.5398-05.2006
Article CAS PubMed PubMed Central Google Scholar
Natarajan A, Sethumadhavan A, Krishnan UM (2019) Toward building the neuromuscular junction in vitro models to study synaptogenesis and neurodegeneration. ACS Omega 4(7):12969–12977. https://doi.org/10.1021/acsomega.9b00973
Article CAS PubMed PubMed Central Google Scholar
Raffa P, Easler M, Urciuolo A (2022) Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res 17(4):759–766. https://doi.org/10.4103/1673-5374.322447
Rimington RP, Fleming JW, Capel AJ et al (2021) Bioengineered model of the human motor unit with physiologically functional neuromuscular junctions. Sci Rep 11(1):11695. https://doi.org/10.1038/s41598-021-91203-5
Comments (0)