Abunasef SK, Amin HA, Abdel-Hamid GA (2014) A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochem Cytobiol 52:42–50. https://doi.org/10.5603/FHC.2014.0005
Alenzi FQ (2009) Effect of nicotinamide on experimental induced diabetes. Iran J Allergy Asthma Immunol 8:11–18
Apidechkul T, Chomchoei C, Upala P (2022) Epidemiology of undiagnosed type 2 diabetes mellitus among hill tribe adults in Thailand. Sci Rep 12:1–9. https://doi.org/10.1038/s41598-022-07977-9
Birkmayer JGD (1996) Coenzyme nicotinamide adenine dinucleotide new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26:1–9
Birkmayer G (2009) NADH: the Biological Hydrogen, the secret of our life energy. Basic Health Publications Inc, United states
Birkmayer JGD, Vrecko C, Volc D, Birkmayer W (1993) Nicotinamide adenine dinucleotide (NADH)—a new therapeutic approach to Parkinson’s disease. Acta Neurol Scand 87:32–35
Eleazu CO, Eleazu KC, Chukwuma S, Essien UN (2013) Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord 12:1–7. https://doi.org/10.1186/2251-6581-12-60
Forouhi NG, Wareham NJ (2022) Epidemiology of diabetes. Medicine (Abingdon) 50:638–643. https://doi.org/10.1016/j.mpmed.2022.07.005
Forsyth LM, Preuss HG, MacDowell AL et al (1999) Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol 82:185–191. https://doi.org/10.1016/S1081-1206(10)62595-1
Article CAS PubMed Google Scholar
Fukaya M, Tamura Y, Chiba Y et al (2013) Protective effects of a nicotinamide derivative, isonicotinamide, against streptozotocin-induced β-cell damage and diabetes in mice. Biochem Biophys Res Commun 442:92–98. https://doi.org/10.1016/j.bbrc.2013.11.024
Article CAS PubMed PubMed Central Google Scholar
Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc 1:1–21. https://doi.org/10.1002/cpz1.78
Giorgi A, Tempera I, Napoletani G et al (2017) Poly(ADP-ribosylated) proteins in mononuclear cells from patients with type 2 diabetes identified by proteomic studies. Acta Diabetol 54:833–842. https://doi.org/10.1007/s00592-017-1013-y
Article CAS PubMed Google Scholar
Goyal SN, Reddy NM, Patil KR et al (2016) Challenges and issues with streptozotocin-induced diabetes – a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63. https://doi.org/10.1016/j.cbi.2015.11.032
Article CAS PubMed Google Scholar
Gurley SB, Clare SE, Snow KP et al (2006) Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol 290:214–222. https://doi.org/10.1152/ajprenal.00204.2005
Hopp AK, Grüter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD+ and ADP-ribosylation. Cells 8:1–23. https://doi.org/10.3390/cells8080890
Ismail L, Materwala H, Al Kaabi J (2021) Association of risk factors with type 2 diabetes: a systematic review. Comput Struct Biotechnol J 19:1759–1785. https://doi.org/10.1016/j.csbj.2021.03.003
Article CAS PubMed PubMed Central Google Scholar
Ku CR, Lee HJ, Kim SK et al (2012) Resveratrol prevents streptozotocin-induced diabetes by inhibiting the apoptosis of pancreatic β-cell and the cleavage of poly (ADP-ribose) polymerase. Endocr J 59:103–109
Article CAS PubMed Google Scholar
Lee D, Kim KH, Lee J et al (2017) Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. J Pharm Pharmacol 69:875–883. https://doi.org/10.1111/jphp.12719
Article CAS PubMed Google Scholar
Lotfi R, Birkmayer JG, Ghouini A (2016) Metabolic and anthropometric effects of NADH RAPID ENERGY® in diabetic type 2. J Food Sci Eng 6:280–285. https://doi.org/10.17265/2159-5828/2016.05.005
Masiello P, Broca C, Gross R et al (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229
Article CAS PubMed Google Scholar
Morimoto S, Mendoza-Rodríguez CA, Hiriart M et al (2005) Protective effect of testosterone on early apoptotic damage induced by streptozotocin in rat pancreas. J Endocrinol 187:217–224. https://doi.org/10.1677/joe.1.06357
Article CAS PubMed Google Scholar
Olek RA, Ziolkowski W, Kaczor JJ et al (2004) Antioxidant activity of NADH and its analogue—an in vitro study. BMB Rep 37:416–421
Soares Melo S, Meirelles MS, Jordão J, Vannucchi H (2000) Lipid peroxidation in nicotinamide-deficient and nicotinamide-supplemented rats. Int J Vitam Nutr Res 70:321–323. https://doi.org/10.1024/0300-9831.70.6.321
Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–46
Szkudelski T (2012) Streptozotocin−nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. https://doi.org/10.1258/ebm.2012.011372
Tomic D, Shaw JE, Magliano DJ (2022) The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 18:525–539. https://doi.org/10.1038/s41574-022-00690-7
Article PubMed PubMed Central Google Scholar
Tufekci KK, Kaplan S (2022) Beneficial effects of curcumin in the diabetic rat ovary: a stereological and biochemical study. Histochem Cell Biol 159:401–430. https://doi.org/10.1007/s00418-022-02171-4
Article CAS PubMed Google Scholar
van Ommen B, Wopereis S, van Empelen P et al (2018) From diabetes care to diabetes cure-the integration of systems biology, health, and behavioral change. Front Endocrinol (Lausanne) 8:1–19. https://doi.org/10.3389/fendo.2017.00381
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. https://doi.org/10.1038/s41419-017-0135-z
Article PubMed Central Google Scholar
Wang X, Wang F, Mao G et al (2022) NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 43:529–540. https://doi.org/10.1038/s41401-021-00705-5
Article CAS PubMed Google Scholar
Wei Q, Huang L, Li J et al (2020) The beneficial effects of Agaricus blazei Murrill on hepatic antioxidant enzymes and the pancreatic tissue recovery in streptozotocin-induced diabetic rats. J Food Biochem. https://doi.org/10.1111/jfbc.13170
Wei J, Zhao Y, Liang H et al (2022) Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B 12:1–17. https://doi.org/10.1016/j.apsb.2021.08.026
Article CAS PubMed Google Scholar
White AT, Schenk S (2022) Intracellular signal for skeletal muscle adaptation NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00054.2012
Wu J, Luo X, Thangthaeng N et al (2017) Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep 11:119–129. https://doi.org/10.1016/j.bbrep.2017.07.007
Article PubMed PubMed Central Google Scholar
Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants Redox Signal 28:251–272. https://doi.org/10.1089/ars.2017.7216
Yaman T, Uyar A, Celik I et al (2017) Histopathological and immunohistochemical study of antidiabetic effects of Heracleum persicum extract ın experimentally diabetic rats. Indian J Pharm Educ Res 51:S450–S457. https://doi.org/10.5530/ijper.51.3s.66
Ying W (2006) NAD+ and NADH in cellular functions and cell death. Front Biosci 11:3129–3148
Zhao Y, Jin J, Hu Q et al (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566. https://doi.org/10.1016/j.cmet.2011.09.004
Article CAS PubMed PubMed Central Google Scholar
Zheng S, Zhao M, Wu Y et al (2016) Suppression of pancreatic beta cell apoptosis by Danzhi Jiangtang capsule contributes to the attenuation of type 1 diabetes in rats. BMC Complement Altern Med 16:1–10. https://doi.org/10.1186/s12906-016-0993-4
Zhou Q, Melton DA (2018) Pancreas regeneration HHS public access. Nature 557:351–358. https://doi.org/10.1038/s41586-018-0088-0.Pancreas
Comments (0)