NADH intraperitoneal injection prevents massive pancreatic beta cell destruction in a streptozotocin-induced diabetes in rats

Abunasef SK, Amin HA, Abdel-Hamid GA (2014) A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochem Cytobiol 52:42–50. https://doi.org/10.5603/FHC.2014.0005

Article  PubMed  Google Scholar 

Alenzi FQ (2009) Effect of nicotinamide on experimental induced diabetes. Iran J Allergy Asthma Immunol 8:11–18

Apidechkul T, Chomchoei C, Upala P (2022) Epidemiology of undiagnosed type 2 diabetes mellitus among hill tribe adults in Thailand. Sci Rep 12:1–9. https://doi.org/10.1038/s41598-022-07977-9

Article  CAS  Google Scholar 

Birkmayer JGD (1996) Coenzyme nicotinamide adenine dinucleotide new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26:1–9

CAS  PubMed  Google Scholar 

Birkmayer G (2009) NADH: the Biological Hydrogen, the secret of our life energy. Basic Health Publications Inc, United states

Birkmayer JGD, Vrecko C, Volc D, Birkmayer W (1993) Nicotinamide adenine dinucleotide (NADH)—a new therapeutic approach to Parkinson’s disease. Acta Neurol Scand 87:32–35

Article  Google Scholar 

Eleazu CO, Eleazu KC, Chukwuma S, Essien UN (2013) Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord 12:1–7. https://doi.org/10.1186/2251-6581-12-60

Article  CAS  Google Scholar 

Forouhi NG, Wareham NJ (2022) Epidemiology of diabetes. Medicine (Abingdon) 50:638–643. https://doi.org/10.1016/j.mpmed.2022.07.005

Article  Google Scholar 

Forsyth LM, Preuss HG, MacDowell AL et al (1999) Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol 82:185–191. https://doi.org/10.1016/S1081-1206(10)62595-1

Article  CAS  PubMed  Google Scholar 

Fukaya M, Tamura Y, Chiba Y et al (2013) Protective effects of a nicotinamide derivative, isonicotinamide, against streptozotocin-induced β-cell damage and diabetes in mice. Biochem Biophys Res Commun 442:92–98. https://doi.org/10.1016/j.bbrc.2013.11.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc 1:1–21. https://doi.org/10.1002/cpz1.78

Article  CAS  Google Scholar 

Giorgi A, Tempera I, Napoletani G et al (2017) Poly(ADP-ribosylated) proteins in mononuclear cells from patients with type 2 diabetes identified by proteomic studies. Acta Diabetol 54:833–842. https://doi.org/10.1007/s00592-017-1013-y

Article  CAS  PubMed  Google Scholar 

Goyal SN, Reddy NM, Patil KR et al (2016) Challenges and issues with streptozotocin-induced diabetes – a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63. https://doi.org/10.1016/j.cbi.2015.11.032

Article  CAS  PubMed  Google Scholar 

Gurley SB, Clare SE, Snow KP et al (2006) Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol 290:214–222. https://doi.org/10.1152/ajprenal.00204.2005

Article  CAS  Google Scholar 

Hopp AK, Grüter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD+ and ADP-ribosylation. Cells 8:1–23. https://doi.org/10.3390/cells8080890

Article  CAS  Google Scholar 

Ismail L, Materwala H, Al Kaabi J (2021) Association of risk factors with type 2 diabetes: a systematic review. Comput Struct Biotechnol J 19:1759–1785. https://doi.org/10.1016/j.csbj.2021.03.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ku CR, Lee HJ, Kim SK et al (2012) Resveratrol prevents streptozotocin-induced diabetes by inhibiting the apoptosis of pancreatic β-cell and the cleavage of poly (ADP-ribose) polymerase. Endocr J 59:103–109

Article  CAS  PubMed  Google Scholar 

Lee D, Kim KH, Lee J et al (2017) Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. J Pharm Pharmacol 69:875–883. https://doi.org/10.1111/jphp.12719

Article  CAS  PubMed  Google Scholar 

Lotfi R, Birkmayer JG, Ghouini A (2016) Metabolic and anthropometric effects of NADH RAPID ENERGY® in diabetic type 2. J Food Sci Eng 6:280–285. https://doi.org/10.17265/2159-5828/2016.05.005

Article  CAS  Google Scholar 

Masiello P, Broca C, Gross R et al (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

Article  CAS  PubMed  Google Scholar 

Morimoto S, Mendoza-Rodríguez CA, Hiriart M et al (2005) Protective effect of testosterone on early apoptotic damage induced by streptozotocin in rat pancreas. J Endocrinol 187:217–224. https://doi.org/10.1677/joe.1.06357

Article  CAS  PubMed  Google Scholar 

Olek RA, Ziolkowski W, Kaczor JJ et al (2004) Antioxidant activity of NADH and its analogue—an in vitro study. BMB Rep 37:416–421

Article  CAS  Google Scholar 

Soares Melo S, Meirelles MS, Jordão J, Vannucchi H (2000) Lipid peroxidation in nicotinamide-deficient and nicotinamide-supplemented rats. Int J Vitam Nutr Res 70:321–323. https://doi.org/10.1024/0300-9831.70.6.321

Article  Google Scholar 

Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–46

CAS  PubMed  Google Scholar 

Szkudelski T (2012) Streptozotocin−nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. https://doi.org/10.1258/ebm.2012.011372

Article  Google Scholar 

Tomic D, Shaw JE, Magliano DJ (2022) The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 18:525–539. https://doi.org/10.1038/s41574-022-00690-7

Article  PubMed  PubMed Central  Google Scholar 

Tufekci KK, Kaplan S (2022) Beneficial effects of curcumin in the diabetic rat ovary: a stereological and biochemical study. Histochem Cell Biol 159:401–430. https://doi.org/10.1007/s00418-022-02171-4

Article  CAS  PubMed  Google Scholar 

van Ommen B, Wopereis S, van Empelen P et al (2018) From diabetes care to diabetes cure-the integration of systems biology, health, and behavioral change. Front Endocrinol (Lausanne) 8:1–19. https://doi.org/10.3389/fendo.2017.00381

Article  Google Scholar 

Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. https://doi.org/10.1038/s41419-017-0135-z

Article  PubMed Central  Google Scholar 

Wang X, Wang F, Mao G et al (2022) NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 43:529–540. https://doi.org/10.1038/s41401-021-00705-5

Article  CAS  PubMed  Google Scholar 

Wei Q, Huang L, Li J et al (2020) The beneficial effects of Agaricus blazei Murrill on hepatic antioxidant enzymes and the pancreatic tissue recovery in streptozotocin-induced diabetic rats. J Food Biochem. https://doi.org/10.1111/jfbc.13170

Article  PubMed  Google Scholar 

Wei J, Zhao Y, Liang H et al (2022) Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B 12:1–17. https://doi.org/10.1016/j.apsb.2021.08.026

Article  CAS  PubMed  Google Scholar 

White AT, Schenk S (2022) Intracellular signal for skeletal muscle adaptation NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00054.2012

Article  Google Scholar 

Wu J, Luo X, Thangthaeng N et al (2017) Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep 11:119–129. https://doi.org/10.1016/j.bbrep.2017.07.007

Article  PubMed  PubMed Central  Google Scholar 

Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants Redox Signal 28:251–272. https://doi.org/10.1089/ars.2017.7216

Article  CAS  Google Scholar 

Yaman T, Uyar A, Celik I et al (2017) Histopathological and immunohistochemical study of antidiabetic effects of Heracleum persicum extract ın experimentally diabetic rats. Indian J Pharm Educ Res 51:S450–S457. https://doi.org/10.5530/ijper.51.3s.66

Article  CAS  Google Scholar 

Ying W (2006) NAD+ and NADH in cellular functions and cell death. Front Biosci 11:3129–3148

Zhao Y, Jin J, Hu Q et al (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566. https://doi.org/10.1016/j.cmet.2011.09.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng S, Zhao M, Wu Y et al (2016) Suppression of pancreatic beta cell apoptosis by Danzhi Jiangtang capsule contributes to the attenuation of type 1 diabetes in rats. BMC Complement Altern Med 16:1–10. https://doi.org/10.1186/s12906-016-0993-4

Article  CAS  Google Scholar 

Zhou Q, Melton DA (2018) Pancreas regeneration HHS public access. Nature 557:351–358. https://doi.org/10.1038/s41586-018-0088-0.Pancreas

Article  CAS  PubMed  PubMed Central  Google Scholar

Comments (0)

No login
gif