Establishment of SLC7A11‐knockout mouse and its preliminary investigation in melanoma

Barbai T, Fejos Z, Puskas LG, Timar J, Raso E (2015) The importance of microenvironment: the role of CCL8 in metastasis formation of melanoma. Oncotarget 6:29111–29128

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Hu SS, Mu L, Zhao BH, Wang MM, Yang NS, Bao GL, Zhu CG, Wu XS (2019) Slc7a11 modulated by POU2F1 is involved in pigmentation in rabbit. Int J Mol Sci 20:2493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV, Bennett DC, Park YM, Gahl WA, Huizing M, Spritz RA, Ben S, Novak EK, Tan J, Swank RT (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. P Natl Acad Sci USA 102:10964–10969

Article  CAS  Google Scholar 

Ding Q, Lu PP, Xia YJ, Ding SP, Fan YH, Li X, Han P, Liu JM, Tian D, Liu M (2016) CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med-Us 5:3246–3259

Article  Google Scholar 

Douguet L, Bod L, Lengagne R, Labarthe L, Kato M, Avril MF, Prevost-Blondel A (2016) Nitric oxide synthase 2 is involved in the pro-tumorigenic potential of gamma delta 17 T cells in melanoma. Oncoimmunology 5:e1208878

Article  PubMed  PubMed Central  Google Scholar 

Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, Catto JWF (2014) Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 20:1990–2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galván I, Inácio Â, Dañino M, Corbí-Llopis R, Monserrat MT, Bernabeu-Wittel JJCE (2019) High SLC7A11 expression in normal skin of melanoma patients. Cancer Epidemiol 62:101582

Article  PubMed  Google Scholar 

Galván I, Moraleda V, Otero I, Álvarez E, Inácio  (2017) Genetic favouring of pheomelanin-based pigmentation limits physiological benefits of coloniality in lesser kestrels Falco naumanni. Mol Ecol 26:5594–5602

Article  PubMed  Google Scholar 

Guo WJ, Zhao YJ, Zhang ZF, Tan N, Zhao FY, Ge C, Liang LH, Jia DS, Chen TY, Yao M, Li JJ, He XH (2011) Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma. Cancer Lett 312:55–61

Article  CAS  PubMed  Google Scholar 

Jara J, Aroca P, Solano F, Martinez J, Lozano JA (1988) The role of sulfhydryl compounds in mammalian melanogenesis: the effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway. Biochim Biophys Acta 967:296–303

Article  CAS  PubMed  Google Scholar 

Ji XM, Qian J, Rahman SMJ, Siska PJ, Zou Y, Harris BK, Hoeksema MD, Trenary IA, Heidi C, Eisenberg R, Rathmell JC, Young JD, Massion PP (2018) xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 37:5007–5019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koppula P, Zhuang L, Gan BY (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12:599–620

Article  CAS  PubMed  Google Scholar 

Lai M, La Rocca V, Amato R, Freer G, Pistello M (2019) Sphingolipid/ceramide pathways and autophagy in the onset and progression of melanoma: novel therapeutic targets and opportunities. Int J Mol Sci 20:3436

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Chen H, Lan Z, He S, Chen R, Wang F, Liu Z, Li K, Cheng L, Liu Y, Sun K, Wan X, Chen X, Peng H, Li L, Zhang Y, Jing Y, Huang M, Wang Y, Wang Y, Jiang J, Zha X, Chen L, Zhang H (2019) mTOR-dependent upregulation of xCT blocks melanin synthesis and promotes tumorigenesis. Cell Death Differ 26:2015–2028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu N, Zhang JL, Yin MZ, Liu H, Zhang X, Li JD, Yan B, Guo YY, Zhou JD, Tao J, Hu S, Chen X, Peng C (2021) Inhibition of xCT suppresses the efficacy of anti-PD-1/L1 melanoma treatment through exosomal PD-L1-induced macrophage M2 polarization. Mol Ther 29:2321–2334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, He M, Chen GQ, He JR, Zhao Q (2011) MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. Febs Lett 585:1363–1367

Article  CAS  PubMed  Google Scholar 

Ma C-H, Jiang R, Li J-D, Wang B, Sun L-W, Lv Y (2014) Experimental study on residual tumor angiogenesis after cryoablation. Asian Pac J Cancer Prev 15:2491–2494

Article  PubMed  Google Scholar 

Ma MZ, Chen G, Wang P, Lu WH, Zhu CF, Song M, Yang J, Wen SJ, Xu RH, Hu YM, Huang P (2015) Xc(-) inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett 368:88–96

Article  CAS  PubMed  Google Scholar 

Mauldin IS, Wang E, Deacon DH, Olson WC, Bao YD, Slingluff CL (2015) TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10. Int J Cancer 137:1386–1396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL (2022) Cancer treatment and survivorship statistics, 2022. Ca Cancer J Clin 72:409–436

Article  PubMed  Google Scholar 

Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, Robinson KC, Devi SP, Vanover JC, D’Orazio JA, McMahon M, Bosenberg MW, Haigis KM, Haber DA, Wang YS, Fisher DE (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449–453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreno JA, Lambros MP (2015) The expression of SLC7A11 transporter in lung and pancreatic cancer tissues at different stages of development. Cancer Res 75:3209

Article  Google Scholar 

Moretti S, Pinzi C, Berti E, Spallanzani A, Chiarugi A, Boddi V, Reali UM, Giannotti B (1997) In situ expression of transforming growth factor beta is associated with melanoma progression and correlates with Ki67, HLA-DR and beta 3 integrin expression. Melanoma Res 7:313–321

Article  CAS  PubMed  Google Scholar 

Motomura Y, Senju S, Nakatsura T, Matsuyoshi H, Hirata S, Monji M, Komori H, Fukuma D, Baba H, Nishimura Y (2006) Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16–F10. Cancer Res 66:2414–2422

Article  CAS  PubMed  Google Scholar 

Pattanayak V, Lin S, Guilinger JP, Ma EB, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

Article  CAS  PubMed  PubMed Central  Google Scholar 

Potterf SB, Virador V, Wakamatsu K, Furumura M, Santis C, Ito S, Hearing VJ (1999) Cysteine transport in melanosomes from murine melanocytes. Pigment Cell Res 12:4–12

Article  CAS  PubMed  Google Scholar 

Prados J, Melguizo C, Ortiz R, Boulaiz H, Carrillo E, Segura A, Rodriguez-Herva JJ, Ramos JL, Aranega A (2010) Regression of established subcutaneous B16–F10 murine melanoma tumors after gef gene therapy associated with the mitochondrial apoptotic pathway. Exp Dermatol 19:363–371

Article  CAS  PubMed  Google Scholar 

Prota G, Rorsman H, Rosengren AM, Rosengren E (1976) Phaeomelanic pigments from a human melanoma. Experientia 32:970–971

Article  CAS  PubMed  Google Scholar 

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez-Cerdeira C, Gregorio MC, Lopez-Barcenas A, Sanchez-Blanco E, Sanchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA (2017) Advances in immunotherapy for melanoma: a comprehensive review. Mediat Inflamm 2017:1–14

Article  Google Scholar 

Romano G, Paradiso F, Li P, Shukla P, Barger LN, El Naggar O, Miller JP, Liang RJ, Helms TL, Lazar AJ, Wargo JA, Taraballi F, Costello JC, Kwong LN (2023) Microparticle-Delivered Cxcl9 Prolongs Braf Inhibitor Efficacy in Melanoma. Cancer Immunol Res 11:558–569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smalley KM, Contractor R, Haass NK, Lee JT, Nathanson KL, Medina CA, Flaherty KT, Herlyn M (2007) Ki67 expression levels are a better marker of reduced melanoma growth following MEK inhibitor treatment than phospho-ERK levels. Brit J Cancer 96:445–449

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian YZ, Guo WN (2020) A review of the molecular pathways involved in resistance to BRAF inhibitors in patients with advanced-stage melanoma. Med Sci Monitor 26:e920957–e920951

Article  CAS  Google Scholar 

Wang M, Cheng H, Wu H, Liu C, Li S, Li B, Su J, Luo S, Li Q (2022) Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomed Pharmacother 154:113636

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif