Abdulrahman AO, Alzubaidi MY, Nadeem MS et al (2021) Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet. Int J Food Sci Nutr 72:923–934. https://doi.org/10.1080/09637486.2021.1886255
Article CAS PubMed Google Scholar
Abdulrahman AO, Kuerban A, Alshehri ZA et al (2020) Urolithins Attenuate Multiple Symptoms of Obesity in Rats Fed on a High-Fat Diet. Diabetes Metab Syndr Obes 13:3337–3348. https://doi.org/10.2147/DMSO.S268146
Article CAS PubMed PubMed Central Google Scholar
Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395. https://doi.org/10.1038/74651
Article CAS PubMed Google Scholar
Chen P, Guo Z, Chen F et al (2022) Recent advances and perspectives on the health benefits of Urolithin B, A bioactive natural product derived from ellagitannins. Front Pharmacol 13:917266. https://doi.org/10.3389/fphar.2022.917266
Article CAS PubMed PubMed Central Google Scholar
Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth musclecell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31:2370–2377. https://doi.org/10.1161/ATVBAHA.111.226670
Dong X, Hu H, Fang Z et al (2018) CTRP6 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Biomed Pharmacother 103:844–850. https://doi.org/10.1016/j.biopha.2018.04.112
Article CAS PubMed Google Scholar
Fisher SA (2010) Vascular smooth muscle phenotypic diversity and function. Physiol Genomics 42A:169–187. https://doi.org/10.1152/physiolgenomics.00111.2010
Article CAS PubMed PubMed Central Google Scholar
Gao H, Huang X, Tong Y, Jiang X (2020) Urolithin B improves cardiac function and reduces susceptibility to ventricular arrhythmias in rats after myocardial infarction. Eur J Pharmacol 871:172936. https://doi.org/10.1016/j.ejphar.2020.172936
Article CAS PubMed Google Scholar
González-Sarrías A, Larrosa M, Tomás-Barberán FA et al (2010) NF-κB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Brit J Nutr 104:503–512. https://doi.org/10.1017/S0007114510000826
Article CAS PubMed Google Scholar
Grootaert MOJ, Moulis M, Roth L et al (2018) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114:622–634. https://doi.org/10.1093/cvr/cvy007
Article CAS PubMed Google Scholar
Ha JM, Yun SJ, Kim YW et al (2015) Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochem Bioph Res Co 464:57–62. https://doi.org/10.1016/j.bbrc.2015.05.097
Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316. https://doi.org/10.1152/physrev.1999.79.4.1283
Article CAS PubMed Google Scholar
Jiang Y, Qian H-Y (2023) Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 29:2. https://doi.org/10.1186/s10020-022-00586-2
Article CAS PubMed PubMed Central Google Scholar
Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59-69. https://doi.org/10.1152/ajpcell.00394.2006
Article CAS PubMed Google Scholar
Lee G, Park J-S, Lee E-J et al (2019) Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia. Phytomedicine 55:50–57. https://doi.org/10.1016/j.phymed.2018.06.032
Article CAS PubMed Google Scholar
Libby P, Hansson GK (2019) From Focal Lipid Storage to Systemic Inflammation: JACC Review Topic of the Week. J Am Coll Cardiol 74:1594–1607. https://doi.org/10.1016/j.jacc.2019.07.061
Article CAS PubMed PubMed Central Google Scholar
Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. https://doi.org/10.1038/nature10146
Article CAS PubMed Google Scholar
Liu M, Gomez D (2019) Smooth muscle cell phenotypic diversity: at the crossroads of lineage tracing and single-cell transcriptomics. Arterioscl Throm Vas 39:1715–1723. https://doi.org/10.1161/ATVBAHA.119.312131
Mele L, Mena P, Piemontese A et al (2016) Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch Biochem Biophys 599:42–50. https://doi.org/10.1016/j.abb.2016.02.017
Article CAS PubMed Google Scholar
Miano JM, Fisher EA, Majesky MW (2021) Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation 143:2110–2116. https://doi.org/10.1161/CIRCULATIONAHA.120.049922
Article CAS PubMed PubMed Central Google Scholar
Piwowarski JP, Kiss AK, Granica S, Moeslinger T (2015) Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPS-induced inflammation in RAW 264.7 murine macrophages. Mol Nutr Food Res 59:2168–2177. https://doi.org/10.1002/mnfr.201500264
Article CAS PubMed Google Scholar
Salabei JK, Cummins TD, Singh M et al (2013) PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J 451:375–388. https://doi.org/10.1042/BJ20121344
Swiatlowska P, Sit B, Feng Z et al (2022) Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci Adv 8:eabm3471. https://doi.org/10.1126/sciadv.abm3471
Article CAS PubMed PubMed Central Google Scholar
Xian W, Yang S, Deng Y et al (2021) Distribution of Urolithins Metabotypes in Healthy Chinese Youth: Difference in Gut Microbiota and Predicted Metabolic Pathways. J Agr Food Chem 69:13055–13065. https://doi.org/10.1021/acs.jafc.1c04849
Zhang F, Guo X, Xia Y, Mao L (2021) An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 79:6. https://doi.org/10.1007/s00018-021-04079-z
Article CAS PubMed PubMed Central Google Scholar
Zhang W, Liu D, Han X et al (2019) MicroRNA-451 inhibits vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via Ywhaz/p38 MAPK pathway. Exp Cell Res 379:214–224. https://doi.org/10.1016/j.yexcr.2019.03.033
Article CAS PubMed Google Scholar
Zhao W, Wang L, Haller V, Ritsch A (2019) A Novel Candidate for Prevention and Treatment of Atherosclerosis: Urolithin B Decreases Lipid Plaque Deposition in apoE-/- Mice and Increases Early Stages of Reverse Cholesterol Transport in ox-LDL Treated Macrophages Cells. Mol Nutr Food Res 63:e1800887. https://doi.org/10.1002/mnfr.201800887
Article CAS PubMed Google Scholar
Zheng D, Liu Z, Zhou Y et al (2020) Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway. Pharmacol Res 153:104655. https://doi.org/10.1016/j.phrs.2020.104655
Comments (0)