Pan X, Zhu Q, Dong X, Li J, Liu H, Ren Z, Li B, Pan LL, Sun J (2022) Macrophage immunometabolism in inflammatory bowel diseases: from pathogenesis to therapy. Pharmacol Ther. 238:108176. https://doi.org/10.1016/j.pharmthera.2022.108176
Article CAS PubMed Google Scholar
Wijnands AM, de Jong ME, Lutgens M, Hoentjen F, Elias SG, Oldenburg B, Dutch Initiative on C, Colitis (2021) Prognostic factors for advanced colorectal neoplasia in inflammatory bowel disease: systematic review and meta-analysis. Gastroenterology 160(5):1584–1598. https://doi.org/10.1053/j.gastro.2020.12.036
Article CAS PubMed Google Scholar
Dignass A, Eliakim R, Magro F, Maaser C, Chowers Y, Geboes K, Mantzaris G, Reinisch W, Colombel J-F, Vermeire S, Travis S, Lindsay JO, Van Assche G (2012) Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J Crohns Colitis 6(10):965–990. https://doi.org/10.1016/j.crohns.2012.09.003
Ramos GP, Papadakis KA (2019) Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc 94(1):155–165. https://doi.org/10.1016/j.mayocp.2018.09.013
Article CAS PubMed Google Scholar
Pugliese D, Felice C, Papa A, Gasbarrini A, Rapaccini GL, Guidi L, Armuzzi A (2017) Anti TNF-alpha therapy for ulcerative colitis: current status and prospects for the future. Expert Rev Clin Immunol 13(3):223–233. https://doi.org/10.1080/1744666X.2017.1243468
Article CAS PubMed Google Scholar
Luo H, Sun Y, Li Y, Lv H, Sheng L, Wang L, Qian J (2018) Perceived stress and inappropriate coping behaviors associated with poorer quality of life and prognosis in patients with ulcerative colitis. J Psychosom Res 113:66–71. https://doi.org/10.1016/j.jpsychores.2018.07.013
Khan H, Sureda A, Belwal T, Cetinkaya S, Suntar I, Tejada S, Devkota HP, Ullah H, Aschner M (2019) Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 18(7):647–657. https://doi.org/10.1016/j.autrev.2019.05.001
Article CAS PubMed PubMed Central Google Scholar
He M, Min JW, Kong WL, He XH, Li JX, Peng BW (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85. https://doi.org/10.1016/j.fitote.2016.09.011
Article CAS PubMed Google Scholar
Rosa SI, Rios-Santos F, Balogun SO, Martins DT (2016) Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 23(1):9–17. https://doi.org/10.1016/j.phymed.2015.11.003
Article CAS PubMed Google Scholar
Duan S, Du X, Chen S, Liang J, Huang S, Hou S, Gao J, Ding P (2020) Effect of vitexin on alleviating liver inflammation in a dextran sulfate sodium (DSS)-induced colitis model. Biomed Pharmacother. 121:109683. https://doi.org/10.1016/j.biopha.2019.109683
Article CAS PubMed Google Scholar
Chen Y, Wang B, Yuan X, Lu Y, Hu J, Gao J, Lin J, Liang J, Hou S, Chen S (2021) Vitexin prevents colitis-associated carcinogenesis in mice through regulating macrophage polarization. Phytomedicine. 83:153489. https://doi.org/10.1016/j.phymed.2021.153489
Article CAS PubMed Google Scholar
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11(1):1–10. https://doi.org/10.1007/s12328-017-0813-5
Nishino K, Nishida A, Inoue R, Kawada Y, Ohno M, Sakai S, Inatomi O, Bamba S, Sugimoto M, Kawahara M, Naito Y, Andoh A (2018) Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol 53(1):95–106. https://doi.org/10.1007/s00535-017-1384-4
Schaubeck M, Clavel T, Calasan J, Lagkouvardos I, Haange SB, Jehmlich N, Basic M, Dupont A, Hornef M, von Bergen M, Bleich A, Haller D (2016) Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65(2):225–237. https://doi.org/10.1136/gutjnl-2015-309333
Veltkamp C, Tonkonogy SL, de Jong YP, Albright C, Grenther WB, Balish E, Terhorst C, Sartor RB (2001) Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tgϵ26 mice. Gastroenterology 120(4):900–913. https://doi.org/10.1053/gast.2001.22547
Article CAS PubMed Google Scholar
Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, Li Z, Mortha A, Merad M, Das A, Gevers D, McGovern DPB, Singh N, Braun J, Jacobs JP, Clemente JC, Grinspan A, Sands BE, Colombel J-F, Dubinsky MC, Faith JJ (2019) Microbiotas from Humans with Inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50(1):212-224.e214. https://doi.org/10.1016/j.immuni.2018.12.015
Article CAS PubMed PubMed Central Google Scholar
Ninfali P, Dominici S, Angelino D, Gennari L, Buondelmonte C, Giorgi L (2013) An enzyme-linked immunosorbent assay for the measurement of plasma flavonoids in mice fed apigenin-C-glycoside. J Sci Food Agric 93(12):3087–3093. https://doi.org/10.1002/jsfa.6143
Article CAS PubMed Google Scholar
Hein E-M, Rose K, van’t Slot G, Friedrich AW, Humpf H-U (2008) Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). J Agric Food Chem 56(6):2281–2290. https://doi.org/10.1021/jf073444o
Article CAS PubMed Google Scholar
Li S, Liang T, Zhang Y, Huang K, Yang S, Lv H, Chen Y, Zhang C, Guan X (2021) Vitexin alleviates high-fat diet induced brain oxidative stress and inflammation via anti-oxidant, anti-inflammatory and gut microbiota modulating properties. Free Radic Biol Med 171:332–344. https://doi.org/10.1016/j.freeradbiomed.2021.05.028
Article CAS PubMed Google Scholar
Chen J, Zhang Y, Guan X, Cao H, Li L, Yu J, Liu H (2022) Characterization of saponins from differently colored quinoa cultivars and their in vitro gastrointestinal digestion and fermentation properties. J Agric Food Chem 70(6):1810–1818. https://doi.org/10.1021/acs.jafc.1c06200
Article CAS PubMed Google Scholar
Munoz-Gonzalez C, Cueva C, Angeles Pozo-Bayon M, Victoria Moreno-Arribas M (2015) Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors. Food Chem 187:112–119. https://doi.org/10.1016/j.foodchem.2015.04.068
Article CAS PubMed Google Scholar
Murthy SNS, Cooper HS, Shim Helen, Shah RS, Ibrahim SA, Sedergran DJ (1993) (ASCP) treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Digest Dis Sci. 38(9):1722–1734
Article CAS PubMed Google Scholar
Celiberto LS, Graef FA, Healey GR, Bosman ES, Jacobson K, Sly LM, Vallance BA (2018) Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology 155(1):36–52. https://doi.org/10.1111/imm.12939
Article CAS PubMed PubMed Central Google Scholar
Jin S, Zhao D, Cai C, Song D, Shen J, Xu A, Qiao Y, Ran Z, Zheng Q (2017) Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification. Sci Rep 7(1):43662. https://doi.org/10.1038/srep43662
Article PubMed PubMed Central Google Scholar
Hua Y, Liu R, Lu M, Guan X, Zhuang S, Tian Y, Zhang Z, Cui L (2021) Juglone regulates gut microbiota and Th17/Treg balance in DSS-induced ulcerative colitis. Int Immunopharmacol. 97:107683. https://doi.org/10.1016/j.intimp.2021.107683
Article CAS PubMed Google Scholar
Rojas-Tapias DF, Brown EM, Temple ER, Onyekaba MA, Mohamed AMT, Duncan K, Schirmer M, Walker RL, Mayassi T, Pierce KA, Ávila-Pacheco J, Clish CB, Vlamakis H, Xavier RJ (2022) Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat Microbiol 7(10):1673–1685. https://doi.org/10.1038/s41564-022-01224-7
Article CAS PubMed PubMed Central Google Scholar
Sheng K, Zhang G, Sun M, He S, Kong X, Wang J, Zhu F, Zha X, Wang Y (2020) Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation. Food Funct 11(9):7817–7829. https://doi.org/10.1039/d0fo01418d
Article CAS PubMed Google Scholar
Wang H, Shen J, Pi Y, Gao K, Zhu W (2019) Low-protein diets supplemented with casein hydrolysate favor the microbiota and enhance the mucosal humoral immunity in the colon of pigs. J Anim Sci Biotechnol 10:79. https://doi.org/10.1186/s40104-019-0387-9
Article CAS PubMed PubMed Central Google Scholar
Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R, Gorkiewicz G, Krause R, Gerstgrasser N, Krejs GJ, Hinterleitner TA (2006) Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med. 355(23):2418–2426
Lee I-A, Kim D-H (2011) Klebsiella pneumoniae increases the risk of inflammation and colitis in a murine model of intestinal bowel disease. Scand J Gastroenterol 46(6):684–693. https://doi.org/10.3109/00365521.2011.560678
Article CAS PubMed Google Scholar
Aktories K (2020) Semaphorins or Frizzled –it is the receptor that direct the action of clostridial glucosylating toxins. Signal Transduct Target Ther 5(1):206. https://doi.org/10.1038/s41392-020-00307-3
Comments (0)